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ABSTRACT Efficient computation offloading is essential for addressing the growing demand for low-
latency, computation-intensive applications in vehicular edge networks. Existing approaches, including
traditional optimization techniques and reinforcement learning-based methods, often struggle to cope with
the highly dynamic network environments and the complex task dependencies characterized by Directed
Acyclic Graphs (DAGs). To address these challenges, this paper proposes a novel centralized Actor-Critic
Convolutional Neural Network-based Offloading Computation (ACCOC) algorithm. By leveraging the
Actor-Critic framework enhanced with convolutional layers, ACCOC efficiently handles high-dimensional
task offloading decisions, balancing delay and energy consumption under dynamic network conditions. The
proposed algorithm is evaluated in a realistic vehicular edge computing environment with varying numbers
of users, bandwidth availability, and edge server computational capabilities. Simulation results reveal that
ACCOC achieves superior performance compared to baseline methods, including a non-convolutional Actor-
Critic algorithm, Deep Q-Network (DQN), and random or fully local execution strategies. Specifically,
ACCOC demonstrates faster convergence and higher system utility, achieving an average reward of 0.78
compared to 0.72 for the non-convolutional baseline. Furthermore, the algorithm maintains robust
performance across diverse parameter settings, highlighting its scalability and adaptability.

Keywords Vehicular Edge Computing, Computation Offloading, Actor-Critic, Convolutional Neural
Networks, Reinforcement Learning, System Optimization

I. INTRODUCTION
The continuous advancement of intelligent vehicular

applications, including autonomous driving, collaborative
traffic management, and immersive infotainment systems,
has dramatically increased the computational and
communication demands on vehicular networks [1].
Vehicular Edge Computing (VEC), by deploying edge
servers near vehicles, emerges as a pivotal solution to
alleviate the limitations of centralized cloud computing,
enabling low-latency task execution and reduced network
congestion [2]. Despite its potential, realizing efficient
computation offloading in VEC remains a formidable
challenge due to the dynamic nature of vehicular
environments and the heterogeneous demands of
computation-intensive tasks.
(1)Challenges in Computation Offloading
Computation offloading decisions in VEC networks

involve complex trade-offs between delay, energy
consumption, and resource allocation efficiency [3]. The
problem becomes particularly challenging when task

dependencies, represented as Directed Acyclic Graphs
(DAGs), are considered [4]. Traditional approaches, such as
heuristic algorithms and convex optimization, often fail to
cope with the dynamic and high-dimensional nature of
VEC environments [5]. Recent efforts leveraging
reinforcement learning (RL) show promise in addressing
these challenges [6]. However, conventional RL algorithms,
including Deep Q-Networks (DQN) and Actor-Critic
methods, face scalability limitations and slow convergence
when applied to DAG-based task offloading in large-scale
vehicular networks.
(2) Motivation and Contributions
To address these challenges, we propose a centralized

Actor-Critic Convolutional Neural Network-based
Offloading Computation (ACCOC) algorithm, tailored for
VEC networks. The motivation stems from two key
observations: 1. High-dimensional task dependencies:
DAG-based tasks require offloading strategies capable of
capturing intricate interdependencies among subtasks,
which traditional RL approaches fail to effectively address.
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2. Dynamic vehicular environments: The rapidly changing
conditions in VEC networks necessitate algorithms that can
adapt to varying user densities, bandwidth availability, and
edge server capabilities. Building on these insights, the
contributions of this paper are summarized as follows:

Novel Algorithm Design: We develop the ACCOC
algorithm that integrates convolutional neural networks
(CNNs) into the Actor-Critic framework, enabling efficient
representation and processing of DAG-based task
dependencies.

Comprehensive Performance Evaluation: The algorithm
is rigorously evaluated in simulated VEC scenarios under
diverse conditions, including varying numbers of users,
bandwidth, and edge server computational capabilities.

Superior Performance: Simulation results demonstrate
that ACCOC outperforms state-of-the-art methods,
including non-convolutional Actor-Critic algorithms, DQN,
and heuristic baselines, in terms of convergence speed,
average reward, and adaptability.

The remainder of this paper is organized as follows:
Section 2 reviews related work on computation offloading
in VEC networks, focusing on traditional optimization
methods and RL approaches. Section 3 presents the system
model, including the DAG-based task representation and
the network resource constraints. Section 4 details the
proposed ACCOC algorithm, highlighting its design and
implementation. Section 5 provides simulation results and
performance analysis, demonstrating the advantages of the
proposed algorithm. Section 6 discusses potential
extensions and future research directions. Section 7
concludes the paper by summarizing the key findings and
contributions.
II. Related Work

(1)Heuristic and Convex Optimization Approaches
Heuristic and convex optimization methods have

historically played a significant role in tackling task
offloading in VEC networks. Early works formulated
offloading problems as optimization models aiming to
minimize task delay or energy consumption. For example,
convex programming techniques were employed to jointly
optimize offloading decisions and resource allocation under
static network conditions [7]. While effective for small-
scale networks or scenarios with predictable dynamics,
these methods are inherently limited by their reliance on
simplified assumptions about network behavior. The high
computational overhead and lack of adaptability make them
unsuitable for real-time decision-making in highly dynamic
vehicular environments.

(2) Reinforcement Learning in Task Offloading
RL has gained traction as a more adaptable alternative

to traditional optimization methods. RL-based algorithms
can learn task offloading policies through interaction with
the environment, allowing them to adapt to dynamic
network states. Among these, DQN have been widely
studied for resource management and task scheduling. For
instance, some studies applied DQN to optimize offloading

decisions under varying vehicular mobility patterns and
wireless conditions, achieving better adaptability compared
to static optimization techniques [8]. However, DQN ’ s
reliance on discrete action spaces and limited capacity for
capturing interdependencies among subtasks often leads to
suboptimal performance in scenarios involving complex
DAG task structures.

Actor-Critic (AC) methods have shown promise in
addressing some of DQN ’s limitations. By decoupling the
policy and value functions, AC methods enable more
efficient exploration of continuous or hybrid action spaces,
making them well-suited for dynamic task offloading.
Recent advancements have further integrated neural
networks into AC frameworks to enhance their
generalization capability and convergence speed [9].
Nevertheless, existing AC-based solutions often lack the
specific mechanisms required to handle DAG tasks'
hierarchical and sequential dependencies, which are
common in VEC systems.

(3)Centralized Offloading Strategies
Centralized task offloading strategies provide a unified

framework for making decisions across multiple tasks and
nodes, offering the potential for globally optimal solutions
[10]. These strategies leverage centralized controllers to
gather system-wide information and execute task
scheduling decisions based on comprehensive network
states. While centralized approaches can theoretically
achieve superior performance, they are often challenged by
communication overhead and computational scalability in
large-scale vehicular environments. Moreover, the task
dependencies inherent in DAG models remain
underexplored, limiting the effectiveness of centralized
algorithms in real-world scenarios.

This paper bridges the aforementioned gaps by
introducing the Actor-Critic Convolutional Offloading
Algorithm (ACCOC), which leverages CNNs to effectively
encode DAG task structures within a single-agent RL
framework. Compared to traditional RL approaches,
ACCOC achieves faster convergence and superior system
utility, as validated through extensive simulations.
III.  System Model

We describe the VEC system model, which comprises
the network topology, task structure, and optimization
objectives. Our model is specifically designed to capture
the hierarchical dependencies and computational constraints
in dynamic vehicular environments

(1)Network Topology
Shown in Figure 1, the VEC system consists of I

vehicular terminals (VTs) and M edge servers (ESs), as
illustrated in Figure 1. Each VT is equipped with limited
computing and communication resources, while ESs are
deployed at roadside units (RSUs) to provide edge
computing capabilities.
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Figure 1: Scenario Model Illustration
Vehicular Terminals: Each VT generates

computational tasks at discrete time slots. Tasks can either
be processed locally or offloaded to ESs.

Edge Servers: Each ES has sufficient computing
resources to handle multiple offloaded tasks simultaneously
but is subject to latency and bandwidth constraints due to
shared network resources. The communication channel
between VTs and ESs is modeled as a single-hop wireless
link. The link quality is influenced by factors such as
vehicular mobility and signal interference.

(2)Task Model
The computational task generated by each VT is

represented as a directed acyclic graph

(DAG),    ,  G V E
, where:

 1 2 | |{ , , , }VV v v v 
denotes the set of subtasks,

with each jv requiring a specific amount of data

transmission jd and computational resources jc .


    ,  i jE v v

represents the dependencies

among subtasks, ensuring that a subtask jv cannot

commence until its predecessor iv is completed.
Each DAG task must be completed within a strict

deadline maxT , accounting for both local processing and
offloading-induced transmission delays. The execution
options for a subtask include:

 Local Execution: Processed on the VT’s onboard
CPU with power consumption proportional to the
computation load.

 Edge Offloading: Offloaded to an ES, which
involves an uplink transmission delay and
computation delay at the ES.

(3) Resource Model
 Computation Resources: Local computation

capacity of each VT is lf (in GHz); Computation

capacity of each ES is mf (in GHz), shared among
all offloaded tasks.

 Communication Resources: Each VT has a
transmission power ip ; The available bandwidth
B is shared among all VTs, and the uplink
transmission rate is governed by the Shannon-
Hartley theorem:

2 2log 1 i i
i

p hR B


   
 

,

where ih is the channel gain and 2 is the noise
power.

(4)Energy and Latency Analysis
The total cost of completing a DAG task includes both

energy consumption and latency, defined as follows:
 Energy Consumption: The energy consumption for

subtask execution includes local computation
energy and transmission energy for offloaded tasks:

offloaded

local, transmit ,j j
j V j V

E E E
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 Latency: The total latency includes local
computation delay, transmission delay, and ES
computation delay:

 
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3.5 Optimization Problem
The objective is to minimize the weighted sum of

energy consumption and latency while ensuring task
completion within the deadline maxT . This can be
formulated as:

min T E 
subject to the following constraints: (1) Dependency
constraints: Predecessor subtasks must complete before
their successors begin; (2) Resource constraints: The
total computation and communication resources
allocated must not exceed the available capacities. (3)
Deadline constraint: maxT T .

The problem is a NP-hard problem, which is
computationally intractable for real-time decision-
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making. Therefore, we propose a centralized RL-based
solution using the ACCOC to address these challenges.
VI. Centralized Computation Offloading Algorithm

In the multi-user, multi-server offloading scenario,
terminal devices with limited computational resources
cannot provide low-latency services. By offloading tasks to
nearby edge servers, the computational burden on terminals
is reduced, significantly decreasing service delay. Based on
the heuristic of obstacle recognition tasks, many
applications consist of multiple dependent subtasks.
Leveraging the parallelism of subtasks can reduce the
execution latency of the application. The execution
sequence of these subtasks is determined by the task
scheduling priority analysis method described in Section 3.

By analyzing the data information and dependency
relationships between subtasks, and adjusting the order of
parallel subtasks based on a topological sorting described
by a Directed Acyclic Graph (DAG), the execution latency
is minimized. In this section, we propose a centralized
computation offloading algorithm for tasks that have been
sorted based on their priority.

Considering the vehicle-edge computing model defined
in Section 3, a Software Defined Network (SDN)
framework is used to obtain offloading decisions for each
terminal task under the premise of full user information
sharing. The SDN collects user and server information,
including location, communication bandwidth, computing
capacity, and personal preferences, to centrally control the
execution strategy of terminal tasks. The SDN is modeled
as a RL agent, where the collected information forms the
environment. The agent interacts with the environment, and
the action taken (offloading decision) is obtained based on
the state information read from the environment. A reward
function is defined to evaluate state-action pairs based on
the optimization objective.

The Actor-Critic algorithm integrates both policy
gradient and value functions, enabling it to capture potential
rewards from the environment's state. The value function
guides the policy parameter updates, and the algorithm
supports single-step updates. This section formulates the
task offloading process as a MDP, and the offloading
decision problem is equivalently replaced by a CNN-based
Actor-Critic algorithm. Additionally, an experience replay
technique is introduced to improve model training
efficiency.
(1)MDP Core Element Analysis
The vehicle task offloading decision process is described

as a MDP. In this part, the definitions of the three core RL
elements—state, action, and reward—are provided as
follows:
State curr

tS : The state curr
tS is defined in two parts: (1)

User task information and the offloading decisions for the
previous subtasks ��

����_1: Task information includes the
subtask priority sequence '

iV and the set of predecessor and

successor tasks for the current subtask curr
ips . (2) Basic

information of the server and the user ��
����_2: This includes

the terminal's location ���� and the server's location ����.
Thus, the state curr

tS can be represented as:

��
���� = [��

����_1, ��
����_2],

where ��
����_1 and ��

����_2 are defined as:
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Action ��
����: At time slot t, the offloading decisions for

all terminal applications' curr-th subtasks form the action
set ��

����:
��

���� = �1,����
� , …, ��,����

� , …, ��,����
� ��[1, �],

where ��,����
� represents the offloading decision for vehicle

i's curr-th subtask at time slot t.
Reward ��

����: The reward function plays a critical role
in guiding offloading decisions. For each action, the reward
will steer the system towards optimizing the task offloading
strategy. To improve system performance, the reward is set
as a function of both system latency and energy
consumption.

From the above analysis, the execution time for each
subtask ��,� is expressed as:

��,� =
��,�
� if ��,�

� = 0
��,�
� �� ��,�

� = m, mϵ�
��,�
�� if ��,�

� =− 1
.

Similarly, the energy consumption ��,� for each subtask is
represented as:

��,� =
E�,�

� if ��,�
� = 0

��,�
� �� ��,�

� = m, mϵ�
��,�

�� if ��,�
� =− 1

.

The increment in time △ ��,� and energy △ ��,� during the
DAG task offloading process are as follows:

△ ��,� = ��� ��,�+1 − ��� ��,� ,
△ ��,� = ��� ��,�+1 − ��� ��,� .

The start time ���,� and finish time ���,� for each subtask
are computed using:

���,� =
0 �� ��,� �� ����� ����
���,�' ��ℎ������,

���,� = ���,� + △ ��,�.
Likewise, the energy consumption at the start ���,� and

finish ���,� are given by:

���,� =
0 �� ��,� �� ����� ����
���,�' ��ℎ������,

���,� = ���,� + △ ��,�.
Thus, the reward ��

���� is defined as:
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where the latency weight factor � and energy weight factor
� satisfy:

� + � = 1.
(2)Network Model Construction
In this part, a CNN-based Actor-Critic model is used to

approximate both the Actor and Critic networks. The
Actor's network structure consists of an input layer, I agent
frameworks, each containing 2 convolutional layers,
pooling layers, a flatten layer, 2 fully connected layers, and
a softmax layer. The input layer has the same dimension as
the state, and the softmax layer outputs the action
probability distribution for the current state. The ReLU
activation function is used in convolutional layers to
enhance the model's nonlinear fitting capability. The Critic
network structure consists of an input layer, 2 convolutional
layers, pooling layers, a flatten layer, and 2 fully connected
layers. The Critic network outputs the evaluation value for
the current state.

Figure 2: Actor network structure

Figure 3: Critic network structure
Because the state space is large, directly using fully

connected neural networks for RL training is inefficient. To
address this, a convolutional network is introduced into the
Actor-Critic model to extract DAG task information from
��

����_1 and feed it into the fully connected layers along with
location and server information from ��

����_2.
(3)Training Process

The training process is based on experience replay, which
stores experience samples ��

����, ��
����, ��

����, ��
����+1 . Once

the experience buffer is full, random samples are drawn to
update the Actor and Critic networks, helping the model
learn to avoid overfitting to specific experiences. Shown in
Algorithm 1, the training steps are as follows:

1.Initialization: Randomly initialize parameters for both
Actor and Critic networks.

2.Sampling: Gather current state information and
interactions, storing experiences sequentially.

3.Training: After the buffer fills, sample mini-batches for
network updates.

4.Termination: Continue until convergence or the
maximum number of iterations is reached.
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V. Simulation Results and Analysis
(1)Simulation Environment and Parameter Settings
In this part, the system environment and centralized

computation offloading algorithm are implemented using
the Pytorch framework in a Python environment. The
simulation environment consists of 5 vehicle terminals and
3 edge servers. In each time slot, all terminals generate
fine-grained tasks, which are offloaded based on the task
scheduling priority analysis and the centralized
computation offloading algorithm. The main simulation
parameters and training hyperparameters are listed in Table
I.
Table I: Simulation Environment Parameters and Training

Hyperparameters
Parameter Value

Number of Vehicles I 5
Number of Edge Servers M 3

Vehicle Speed 17m/s
Vehicle Computing

Capacity ��

0.5GHz

Edge Server Computing
Capacity ��

5GHz

Vehicle Transmission
Power ��

0.1Watt

Bandwidth B 100MHz
Signal Coverage Range R 200m
Number of Subtasks �� [8,10]

Subtask Data Size ��,� [100,500]KB

Subtask CPU Cycles ��,� [10,50]MC

Noise Power �2 -100dbm
Latency Weight � 0.5
Energy Weight � 0.5
Buffer Capacity D 100

Training Batch Size 32
Actor Learning Rate 0.005

Critic Learning Rate 0.01

Discount Factor 0.9

To simplify the experiment, it is assumed that all
terminals and edge servers have the same computing
capacity. The vehicle computing power ��, edge server
computing power ��, transmission power ��, and effective
capacitance switch � values are referenced from literature
[11]. The subtask data size and required CPU cycles are
randomly generated using a uniform distribution as
specified in Table I. The experience replay buffer is set
with a capacity of 100, and when the buffer reaches this
capacity, 32 samples are randomly selected for training and
updating the network parameters.

In the above simulation parameter setup, the subtask
information within the DAG is set within a large range to
ensure the ACCOC algorithm has general applicability. To
further validate the effectiveness of the algorithm, the
performance under varying user numbers, bandwidth, and
MEC computing capacity is analyzed in Section 5.2.
(2)Performance Analysis
2.1 Convergence Evaluation
We evaluate and analyze the performance of the

proposed ACCOC algorithm based on the simulation results.
The ACCOC algorithm is compared with the ACCOFC
algorithm, DQN algorithm, random (RANDOM) algorithm,
and all-local (AL) algorithm. The RANDOM algorithm
represents a scenario where terminal tasks are randomly
selected to be processed locally or offloaded. The AL
algorithm represents the scenario where all terminal tasks
are processed locally.

Figure 4 shows the average reward value for each round
of training, where the x-axis represents the number of
training rounds, and the y-axis represents the average
reward value per round. In this paper, a training round
refers to the process of handling a single DAG task. Based
on the definition of the reward value, a reward value less
than 0 indicates that the task offloading performance is
worse than local execution, while a reward value equal to 0
means that the algorithm has no effect. The goal is to have a
reward value greater than 0, with higher values being better.
This section explores the convergence performance of
different algorithms.
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Figure 4: System Performance under Different Training
Rounds

From Figure 4, the proposed ACCOC algorithm’s reward
value converges to approximately 0.78, the ACCOFC
algorithm converges to 0.72, and the RANDOM algorithm
approaches 0.44. Based on the reward value definition, the
AL algorithm consistently produces a reward value of 0.
The proposed ACCOC algorithm outperforms the
ACCOFC, RANDOM, and AL algorithms in terms of
convergence speed and the final value, achieving the best
system utility.
2.2 Impact of Number of Users on System

Performance
Next, we experiment with the relationship between the

number of users and system performance. The x-axis in
Figure 5 represents the number of terminal users, and the y-
axis represents the average system loss after convergence
for the three algorithms. This experiment evaluates how the
average system loss changes as the number of users
increases. The average system loss refers to the weighted
sum of the actual delay and energy consumption for a
terminal user to complete a DAG task in the mobile edge
computing system.

Figure 5: Average System Loss under Different Numbers of
Users

From Figure 5, it can be observed that the system loss for
all three algorithms increases as the number of users grows.
This is because an increased number of users leads to more

terminals competing for limited channel and computing
resources. Among the three algorithms, the proposed
ACCOC algorithm results in the lowest consumption, while
the ACCOFC algorithm shows a significantly higher
average system energy consumption.
2.3 Impact of Bandwidth on System Performance
Next, we analyze the relationship between

communication bandwidth and system performance. The x-
axis in Figure 6 represents the communication bandwidth
available at the edge servers, and the y-axis represents the
average system loss after convergence for the algorithms.
To more effectively compare the impact of bandwidth on
system loss, the number of subtasks generated for each time
slot is fixed at 10, with a subtask data size of 300 KB and
required CPU cycles set to 30 MC.

Figure 6: Average System Loss under Different Bandwidths
From Figure 6, it can be seen that as the communication

bandwidth of the edge servers increases, the average system
loss for the ACCOC, ACCOFC, and RANDOM algorithms
decreases. This is because the increased uplink bandwidth
for offloading terminal tasks to edge servers reduces the
task upload time and energy consumption. The proposed
ACCOC algorithm shows the lowest and most stable
system loss.
2.4 Impact of Edge Server Computing Power on

System Performance
Finally, we investigate the impact of edge server

computing power on system performance. The x-axis in
Figure 7 represents the computing power of the edge
servers, with values set at 1 GHz, 3 GHz, 5 GHz, 7 GHz,
and 9 GHz. The y-axis represents the average system loss
of the algorithms at different computing powers. To
minimize random factors, the subtask data size is fixed at
300 KB, and the required CPU cycles are set to 30 MC.
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Figure 7: Average System Loss under Different Edge
Server Computing Powers

From Figure 7, it is observed that as the edge server
computing power increases, the average system loss for all
three algorithms decreases. This is because the time
required for terminal tasks to be processed on the edge
server decreases as its computing capacity improves.
Moreover, the proposed ACCOC algorithm consistently
achieves the lowest average system loss across different
parameters and remains more stable than the ACCOFC
algorithm.
VI. Conclusion

In this paper, we proposed a novel ACCOC (Adaptive
Centralized Computation Offloading Control) algorithm for
optimizing task offloading in mobile edge computing
systems. The proposed algorithm efficiently balances the
computation and communication resources in a vehicular
network with edge servers, considering the dynamic task
requirements and resource constraints.

Through extensive simulation experiments, we evaluated
the performance of the ACCOC algorithm under various
conditions, including different numbers of users, bandwidth,
and edge server computing power. The results
demonstrated that the ACCOC algorithm outperforms
several baseline algorithms, such as the ACCOFC, DQN,
RANDOM, and AL algorithms, in terms of convergence
speed, system utility, and overall system loss. In future
work, we aim to explore decentralized approaches and
further improve the scalability and robustness of the
algorithm in large-scale systems.
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