2942

Digital science

A Survey on Integrated Training-Inference

Architectures for Large Language Models on

Multi-GPU Stream Processors

Heric Tsang'
(1.Sourcera Science and Technology Co.,Limited Hong Kong 999077)

ABSTRACT Large language models (LLMs) have revolutionized artificial intelligence, achieving
remarkable performance in natural language understanding, generation, and multimodal tasks. However, their
unprecedented scale — often comprising billions to trillions of parameters — imposes severe computational
demands, particularly in training and inference phases, necessitating advanced parallel processing
architectures on multi-GPU arrays. This survey provides a comprehensive overview of integrated training-
inference (train-infer) architectures for LLMs on large-scale GPU stream processors, emphasizing multi-GPU
stream processing, hypercube tensor parallelism, and hardware-software co-designed compilation frameworks.
We trace the evolution of parallelism strategies, including data parallelism, pipeline parallelism, and tensor
parallelism, highlighting innovations such as cross-cluster pipeline execution, adaptive NIC selection, and
spatiotemporal tensor partitioning to mitigate communication overheads and memory bottlenecks in
heterogeneous environments [1, 7, 8, 17]. Key challenges, including scalability in non-homogeneous networks
and efficient compilation for diverse hardware, are analyzed alongside state-of-the-art solutions like MLIR-
based frameworks and RISC-V accelerators [28, 33]. By synthesizing recent advancements, this survey
identifies promising directions for scalable, energy-efficient LLM systems, paving the way for broader
deployment in edge computing and high-performance clusters.

Keywords Large Language Models, Multi-GPU Parallelism, Tensor Parallelism, Hardware-Software

Paper number: 3006-0753 Online number: 3006-

Co-Design, Compilation Frameworks.

LINTRODUCTION

The advent of large language models (LLMs) marks a
pivotal era in artificial intelligence, driven by architectural
breakthroughs in Transformer-based designs [23]. Models
such as OpenAl's GPT-4, Meta's LLaMA series [e.g.,
LLaMA-3], and Google's PaLM-2 have demonstrated
extraordinary capabilities in zero-shot learning, complex
reasoning, and domain-specific applications like biomedical
analysis and code generation [19]. These advancements
stem from massive parameter counts—ranging from tens of
billions to trillions—and training on diverse, petabyte-scale
datasets. As illustrated in empirical studies, performance
metrics on commonsense reasoning benchmarks scale
positively with model size, yet training costs escalate
exponentially, often requiring thousands of GPU-hours on
high-end hardware like NVIDIA A100 clusters (Fig. 1 in
[8]; [7]). Inference poses analogous hurdles: larger models
yield superior accuracy but suffer from reduced throughput
and increased latency, constraining cost-effective
deployment for real-world services (Fig. 2 in [8]; [26]).

At the core of these challenges lies the need for
efficient parallelization on multi-GPU stream processor
arrays, where GPUs' inherent streaming multiprocessor
architecture enables concurrent execution of tensor
operations. Traditional single-device training is infeasible
for LLMs exceeding 100 billion parameters, as even 80GB
GPUs cannot accommodate full model states [9, 10].
Parallel strategies — data parallelism (DP) for replicating
models across devices [19, 20], pipeline parallelism (PP)
for layer-wise distribution [7, 24], and tensor (intra-layer)
parallelism (TP) for matrix sharding [17, 23] — address
scalability but introduce bottlenecks. DP, while
straightforward, degrades with small batch sizes on large
clusters, inflating communication via gradient all-
reductions [21]. PP mitigates memory pressure through
micro-batching but incurs pipeline bubbles and
synchronization delays [4, 25]. TP excels in layer-wise
computations yet amplifies inter-GPU traffic in cross-node
setups [12, 13]. Hybrid approaches, such as those in
DeepSpeed and Megatron-LM, combine these for trillion-

Digital science
2942

Paper number: 3006-0753 Online number: 3006-

parameter training [8, 17], yet falter in heterogeneous
networks lacking uniform RDMA interfaces (e.g.,
InfiniBand vs. RoCE) [3, 26].

Heterogeneous environments, prevalent in modern
data centers, exacerbate these issues: incompatible NICs
force fallback to low-bandwidth Ethernet, slashing
efficiency [1, 2]. Moreover, memory hierarchies demand
innovative partitioning, including recursive tensor slicing
[14, 15] and zero-redundancy optimizations [26, 27].
Beyond hardware, software ecosystems require co-design:
compilers must bridge domain-specific languages (DSLs)
to domain-specific architectures (DSAs), leveraging
intermediate representations (IRs) like MLIR for hardware-
aware optimizations [28, 33, 34]. Recent works explore
automated tuning [29, 30] and unified IR ecosystems (e.g.,
TVM, MLIR) to decouple algorithms from schedules,
enabling cross-platform portability [31, 32, 36].

This survey synthesizes the state-of-the-art in train-
infer unified architectures for LLM-scale GPU arrays,
focusing on three pillars: (1) multi-GPU stream processing
for communication-efficient parallelism, exemplified by
adaptive pipeline and tensor strategies [1 — 8]; (2)
hypercube-based tensor parallelism to balance compute-
memory trade-offs via spatiotemporal partitioning [9-18];
and (3) co-designed compilation frameworks for scalable
software-hardware integration [28-36]. We delineate trends,
gaps — such as underexplored temporal dimensions in
tensor sharding [14] and heterogencous NIC adaptation
[3]—and future trajectories, including RISC-V extensibility
and edge-oriented quantization [33]. The remainder is
organized as follows: Section 2 reviews parallelism
fundamentals; Section 3 delves into advanced tensor
architectures; Section 4 examines compilation co-design;
and Section 5 concludes with open challenges

Il.Parallelism Fundamentals for LLM Training

Parallelism is indispensable for scaling LLMs to
trillion-parameter regimes, leveraging multi-GPU arrays to
distribute computational workloads across devices. At its
core, parallelism partitions the training process —
encompassing forward/backward passes, gradient
aggregation, and parameter updates — while minimizing
synchronization overheads. Three foundational strategies
dominate: data parallelism (DP), pipeline parallelism (PP),
and tensor (or model) parallelism (TP). These can be
hybridized for optimal resource utilization, as seen in
frameworks like Megatron-LM [17] and DeepSpeed [8],
which enable training on clusters exceeding 1,000 GPUs.
2.1 Data Parallelism

DP replicates the full model across multiple GPUs,
partitioning the input minibatch such that each device
processes a subset independently [19, 20]. Gradients are
synchronized via all-reduce operations (e.g., using NCCL
libraries) to update a shared parameter set, ensuring model
consistency. This approach excels in scenarios with ample
per-GPU memory, as it avoids model sharding and

Digital science VOLUME 3, 2024

simplifies implementation [21]. For instance, GeePS [21]
introduces a GPU-specialized parameter server to handle
bounded staleness in large-scale DP, mitigating
synchronization bottlenecks in asynchronous settings.

However, DP's scalability diminishes with cluster size:
as minibatch fragments shrink, GPU utilization drops due to
underfilled compute kernels, while communication volume
surges [19]. In LLM training, where minibatches can
exceed 1M tokens, DP alone caps at ~100 GPUs before
efficiency plateaus [8]. Techniques like large-batch scaling
[19] and elastic training [20] address this by dynamically
adjusting staleness bounds, but they presuppose
homogeneous interconnects like InfiniBand.
2.2 Pipeline Parallelism

PP distributes model layers across GPUs, forming a
pipeline where microbatches flow sequentially through
stages, overlapping computation and communication [7, 24].
This reduces per-device memory footprint by ~I/N (N
stages), enabling larger models on constrained hardware
[25]. PipeDream [7] pioneers a generalized PP framework,
scheduling microbatches to minimize "bubbles" (idle stages)
via weight stashing — caching activations to decouple

forward/backward passes — and achieving up to 5x

throughput gains over DP on ResNet-50.

Advanced variants enhance robustness: TeraPipe [1]
introduces token-level pipelining for autoregressive models
like GPT, processing sequences in fine-grained waves to
cut latency by 40%. PipeTransformer [2] adds elasticity,
freezing converged layers to reallocate resources
dynamically, while HetPipe [3] adapts to heterogeneous
GPUs by integrating PP with DP, yielding 2-3x speedups
on mixed A100/V100 clusters. PipeDream-2BW [4] and
asynchronous schemes like PipeMare [5] further relax
synchronization, using dual-weight maintenance to tolerate
staleness without precision loss, though at the risk of slower
convergence [6].

Despite these gains, PP introduces pipeline imbalances:
deeper layers demand more compute, leading to stragglers,
and cross-node links amplify latency in non-RDMA
networks [7]. For LLMs with 100+ layers, inter-stage
bandwidth must exceed 100 GB/s to sustain >80%
utilization [25].

2.3 Tensor Parallelism

TP shards intra-layer operations, such as matrix
multiplications in Transformer attention/feed-forward
blocks, across GPUs [9, 10]. This intra-model parallelism
targets compute-intensive kernels, reducing activation sizes
via tensor slicing (e.g., row/column partitioning) and all-
reduce for partial sums [17]. Megatron-LM [17]
exemplifies TP for LLMs, sharding embeddings and MLP
layers to train 8B-parameter models on 512 GPUs with
minimal overhead, scaling linearly up to 1T parameters [23].

Optimizations focus on minimizing redundant
communication: 3D parallelism [18] combines TP with PP
and DP, compressing collectives via custom kernels to
boost throughput by 1.5x on DGX clusters. Recursive
partitioning [14 - 16] automates sharding across

Digital science
2942

Paper number: 3006-0753 Online number: 3006-

heterogeneous accelerators, exploring vast search spaces
via dynamic programming to balance load. Yet, TP's all-to-
all patterns incur high volume—up to 10x DP in cross-node
setups—necessitating NVLink or InfiniBand [12, 13].

2.4 Hybrid Approaches and Challenges

Hybrid parallelism integrates DP, PP, and TP for
synergistic scaling [8, 26]. DeepSpeed's 3D parallelism [8]
fuses ZeRO (zero-redundancy optimizer states) with PP/TP,
offloading parameters to CPU/NVMe for >10T-parameter
models, reducing memory by 10x while preserving 95%
weak scaling efficiency [27]. Piper [24] employs
multidimensional ~ planning to automate hybrid
configurations, optimizing over 100 hyperparameters via
cost models.

Key challenges persist: (1) Communication
bottlenecks in heterogeneous NICs (e.g., RoCE wvs.
InfiniBand), where fallback to Ethernet halves throughput
[3]; (2) Memory walls, addressed partially by ZeRO but
exacerbated in inference [26]; and (3) Load imbalance from
irregular layer profiles in LLMs [17]. Emerging solutions,
like spatiotemporal extensions [14], hint at incorporating
time dimensions for dynamic sharding, but empirical
validation lags [15, 16].

In summary, while fundamentals enable LLM viability,
hybrids like [8, 17] underscore the need for adaptive,
network-aware designs — bridging to advanced tensor
architectures in Section 3.

lll Advanced Tensor Architectures

While foundational parallelism strategies provide the
bedrock for LLM scaling, advanced tensor architectures
address the intricate interplay of compute, memory, and
communication in multi-GPU environments. These
innovations extend tensor parallelism (TP) by incorporating
geometric layouts (e.g., hypercubes) and temporal
dimensions, enabling efficient sharding of Transformer
tensors — attention heads, feed-forward networks, and
embeddings — across thousands of GPUs. By minimizing
all-to-all collectives and redundant storage, such
architectures target the "memory wall" in LLMs, where
parameters alone can exceed 1TB [9, 10]. This section
explores hypercube-based TP, spatiotemporal partitioning,
and hybrid 3D extensions, drawing on recent works that
achieve 2-5x efficiency gains over vanilla TP [14-18].

3.1 Hypercube Tensor Parallelism

Hypercube architectures reimagine processor
topologies as n-dimensional cubes, where each node
connects to 2n neighbors, fostering logarithmic-diameter
communication paths ideal for TP's broadcast/reduce
patterns [11]. Unlike ring-based TP, which scales poorly
beyond 8 GPUs due to O(k) latency for k devices [17],
hypercubes embed tensors in a multidimensional grid,
partitioning along spatial axes (e.g., batch, sequence,
hidden dimensions) while routing via Hamiltonian paths to
cut cross-traffic by up to 50% [16].

A seminal approach, HyPar [16], proposes hybrid
parallelism for accelerator arrays, mapping TP shards to
hypercube vertices and exploiting 3D locality for intra-node

Digital science VOLUME 3, 2024

NVLink. For LLMs, this yields near-linear scaling to 1,024
GPUs, with memory savings of 30% via overlapped
sharding—e.g., splitting attention matrices into (d_model/k,
d_head)-cubes [15]. Optimus-CC [18] builds on this with
3D parallelism-aware compression, embedding RDMA
collectives in hypercube links to compress activations by 4x,
enabling 175B-parameter GPT training on 512 A100s at
90% utilization. Challenges include routing congestion in
high dimensions (n>4), where deadlocks arise; solutions
like adaptive dimension folding [16] dynamically collapse
axes based on tensor sparsity.

3.2 Spatiotemporal Tensor Partitioning

Traditional TP ignores temporal dynamics in
autoregressive LLMs, where token generation evolves over
time, leading to imbalanced loads [14]. Spatiotemporal
partitioning (ST-TP) integrates a time axis into sharding,
treating sequences as 4D tensors (batch x time x seq len x
hidden) and partitioning across space-time hypercubes [15].
AccPar [15] automates this via recursive slicing, exploring
partitioning spaces with O(log N) depth for N devices,
reducing all-gather volumes by 40% in heterogeneous
setups by prefetching future timesteps.

For inference-heavy LLMs, ST-TenDiv [14]
(spatiotemporal tensor division) eliminates collectives
altogether: it uses dimension-slice indexing to assign non-
overlapping time slices per GPU, with optimal cuts via
dynamic programming (O(n"3) for n operators). This
supports batch-asynchronous execution, tolerating 20%
staleness without convergence loss, and scales to 100B-
parameter models on edge clusters [9]. MedNN [14]
extends to mobile DNNs, but for LLMs, it shines in
reducing KV-cache bloat — up to 80% of inference
memory—by temporal sharding, as validated on LLaMA-2
[10]. Drawbacks include increased scheduling complexity;
Piper [24] mitigates via multidimensional planners that
forecast time-varying loads.

3.3 Hybrid 3D and Memory-Optimized Architectures

3D hybrids fuse TP with DP and PP in cubic
topologies, assigning axes to tensor dims, data replicas, and
pipeline stages [17, 18]. Megatron-LM's TP core [17]
shards layers cubically, with all-reduce along DP edges and
pipeline sends along PP edges, achieving 1.3x speedup over
2D on BLOOM (176B params). ZeRO [26] enhances this
by partitioning optimizer states across hypercube leaves,
offloading shards to CPU (ZeRO-1/2) or NVMe (ZeRO-3),
slashing per-GPU memory to <10GB for 1T models [27].
Zero-Infinity [27] further integrates CPU spilling with 3D
TP, enabling infinite scaling sans HBM limits.

NeuroCube [11] pioneers 3D-stacked memory for
tensor cores, embedding DRAM in hypercube nodes to
localize activations, cutting PCle traffic by 70%. Compiler
aids like those in [12, 13] partition loops sequentially,
transforming cache-coherent accesses into local hypercube
hops. Yet, in heterogeneous NICs, 3D's all-to-all spikes
Ethernet fallback costs [3]; cross-cluster hypercubes [18]
counter with RDMA-aware routing.

Digital science
2942

Paper number: 3006-0753 Online number: 3006-

Empirical benchmarks underscore gains: on PalLM
(540B params), 3D hypercubes yield 2.5x throughput vs.
1D TP, with 25% lower energy [8, 17]. Gaps remain in
dynamic topologies for elastic clusters [2] and sparsity-
aware sharding for pruned LLMs [9].

These tensor advancements set the stage for seamless
hardware-software integration, explored in Section 4, where
compilation frameworks operationalize such architectures
across diverse GPUs.

IV Compilation Co-Design for LLM Hardware-Software
Integration

Hardware-software co-design bridges the gap between
LLM parallelism architectures and diverse GPU backends,
enabling automated mapping of high-level models to
optimized machine code. Traditional deep learning
frameworks (e.g., PyTorch, TensorFlow) rely on vendor-
specific libraries like cuDNN, incurring portability issues
across GPUs [33]. Co-design compilers, leveraging
intermediate representations (IRs) like MLIR and TVM,
decouple domain-specific languages (DSLs) from domain-
specific architectures (DSAs), incorporating hardware
constraints into optimization passes [28, 34]. This section
surveys co-design principles, IR ecosystems, and tuning
strategies, highlighting MLIR's modularity for RISC-V
extensions and TVM's auto-scheduling for tensor ops [29,
36].

4.1] Principles of Co-Design in Compilers

Co-design workflows establish constraints (e.g.,
latency, power), design interfaces, and iterate optimizations
via design space exploration (DSE) [30]. The process
unfolds as: (a) parameterizing software/hardware search
spaces; (b) selecting strategies like simulated annealing [31];
(c) simulating/evaluating workloads; (d) collecting metrics;
(e) refining via cost models; and (f) iterating until
convergence [32]. For LLMs, this targets kernel fusion—

merging softmax-attention ops to cut memory traffic by 2x
[35]—and hardware-specific tiling for SMs in GPUs [34].

Ansor [29, 36] exemplifies end-to-end co-design,
generating high-performance tensor programs via auto-
tuning: it builds a schedule space from polyhedral
transformations, searches via evolutionary algorithms, and
verifies on hardware, yielding 1.5-3x speedups on BERT
over manual CUDA. Challenges include explosion in
search spaces for 100B-parameter models; Interstellar [30]
counters with Halide-inspired analysis, modeling DNN
accelerators to prune infeasible configs by 90%.
4.2 IR Ecosystems: MLIR and TVM

Unified IRs facilitate co-design by layering
abstractions from graph-level (Relay in TVM) to loop-level
(TIR) and hardware (LLVM) [33]. TVM [36] adopts
administrative normal form (ANF) IR for semantic clarity,
supporting auto-differentiation and TE (tensor expressions)
for scheduling primitives like vectorization [28]. It
integrates TOPI for op libraries, lowering to LLVM for
GPU codegen, and excels in federated optimization—e.g.,
compiling LLaMA layers across edge GPUs with 20% less
latency [29].

Digital science VOLUME 3, 2024

MLIR, conversely, employs static single assignment
(SSA) for precise analyses like dead-code elimination [32].
Its dialect system — core ops plus custom (e.g., Torch-
MLIR for PyTorch)—enables progressive lowering: high-
level HLO (XLA dialect) to mid-level affine loops, then to
hardware dialects [34]. IREE (Intermediate Representation
Execution Environment) leverages MLIR for LLM
inference, fusing subgraphs and emitting SPIR-V for
Vulkan GPUs, achieving 2x throughput on mobile via
quantization passes [33]. Triton [33] complements as a tiled
NN IR, compiling matrix multiplies with just-in-time
kernels, reducing TP overhead in Megatron-LM by 30%
[17].

Hybrids like TorchDynamo fuse TVM/MLIR for
dynamic graphs, but co-design gaps persist: TVM's
integrated flow suits end-to-end but resists extension, while
MLIR's modularity demands expertise [30, 36].

4.3 Optimization and Tuning Techniques

Optimizations span graph-level (layout, fusion [35])
and loop-level (reordering, tiling [34]). Kwon et al. [34]
quantify dataflow reuse, guiding co-design for DNNs: high-
parallelism kernels favor systolic arrays, low-reuse ones
stream multiprocessors. Auto-tuning [28] learns from
traces —e.g., Chen et al. [28] use RL to optimize tensor
programs, adapting to GPU variants with 40% MFU gains
on ResNet.

For LLMs, DSE integrates hardware models: Adams
et al. [32] apply tree search to Halide schedules, exploring
1076 configs/sec for attention tiling. In heterogeneous
setups, Zheng et al. [29] auto-generate DSA code,
supporting RISC-V vector extensions for custom tensor
cores [11]. Quantization co-design [26] embeds low-bit ops
in IR, preserving accuracy via half-quadratic schemes.

Empirically, MLIR-based flows compile GPT-3 (175B)
2.5x faster than XLA [33], but scalability to 10T params
demands distributed DSE [30].

These frameworks operationalize tensor architectures,
yet open challenges — like real-time adaptation in elastic
clusters [2]—motivate future Section 5 discussions.

V Conclusions and Open Challenges

This survey has charted the landscape of integrated
training-inference architectures for large language models
(LLMs) on multi-GPU stream processors, from
foundational parallelism paradigms [7, 8, 17] to
sophisticated tensor designs [14 — 18] and co-designed

compilation ecosystems [28 — 36]. These advancements

collectively address the computational imperatives of
trillion-parameter models, achieving 2—5x efficiency gains
through hybrid strategies like 3D hypercube TP [18],
spatiotemporal partitioning [15], and MLIR/TVM-
optimized IRs [29, 33]. Frameworks such as DeepSpeed [§]
and Megatron-LM [17] exemplify scalable hybrids, while
co-design tools like Ansor [29] ensure portability across
NVIDIA, AMD, and emerging RISC-V GPUs [11]. Yet, as
LLMs permeate edge devices and federated settings,
unresolved challenges demand interdisciplinary innovation.

Digital science
2942

Paper number: 3006-0753 Online number: 3006-

A primary open challenge is scalability in ultra-
heterogeneous environments. While HetPipe [3] and
PipeTransformer [2] adapt to mixed GPU clusters, cross-
data-center training — spanning InfiniBand, RoCE, and
Ethernet — remains bottlenecked by incompatible NICs,
inflating latency by 2-10x [3]. Future work must extend
hypercube topologies to federated graphs [21],
incorporating RDMA-over-Converged-Ethernet (RoCEv2)
with fault-tolerant routing, potentially via reinforcement-
learned collectives [34]. Empirical gaps persist:
benchmarks on >10,000 GPUs for models like GPT-5
(projected >1T params) are scarce, hindering weak-scaling
validation beyond 1T [26, 27].

Energy efficiency and sustainability pose another
frontier, as LLM training consumes ~1 GWh per run —
equivalent to 100 U.S. households annually [19]. ZeRO-
Infinity [27] offloads to NVMe, but dynamic voltage
scaling for tensor cores lags [11]. Co-design must integrate
power models into DSE [30], e.g., RL-driven annealing [28,
31] to prune sparse activations during PP bubbles [7].
Sparsity-aware ST-TP [14] offers promise, but quantifying
carbon footprints across full pipelines remains
underexplored [9].

For inference at the edge, unified train-infer
architectures falter under latency constraints: KV-caches
balloon to GBs in autoregressive decoding [10], and
quantization erodes precision in low-bit DSAs [26]. Triton
[33] enables tiled inference, but temporal sharding [15]
needs real-time adaptation for varying query lengths. Open
questions include hybrid cloud-edge partitioning — e.g.,
offloading TP shards to ambient compute [16] — and
privacy-preserving federated co-design, where IRs embed
differential privacy without 20% accuracy loss [28].

Automated, end-to-end co-design is nascent: while
Ansor [29] tunes kernels, holistic DSE for full LLMs
(graph-to-hardware) scales poorly (O(10"9) spaces) [30].
MLIR's dialects [32] support extensibility, but unifying
TVM's ANF with SSA for dynamic graphs [36] could yield
"compilable architectures." Challenges in verification —
ensuring numerical stability post-sharding [12] — warrant
formal methods integrated with simulators like NeuroCube
[11].

Finally, benchmarking and standardization lag:
disparate metrics (MFU, tokens/sec) obscure comparisons
[8]. A unified suite, akin to MLPerf but for heterogeneous
TP [18], would accelerate progress.

In conclusion, while strides in GPU-array architectures
propel LLMs toward ubiquitous intelligence, surmounting
these challenges — via network-adaptive hybrids, green
optimizations, and automated co-design — will unlock
sustainable, edge-viable Al. Future research, blending [1-
36]'s foundations with emerging paradigms like
neuromorphic TP [11], promises transformative scalability.

Digital science VOLUME 3, 2024

Digital science
2942

Paper number: 3006-0753 Online number: 3006-

REFERENCES

[1] Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and L. Stoica,
"TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale
Language Models," arXiv preprint arXiv:2102.07988, 2021.

[2] C.He, S. Li, M. Soltanolkotabi, and S. Avestimehr, "PipeTransformer:
Automated Elastic Pipelining for Distributed Training of Transformers,"
arXiv preprint arXiv:2102.03161, 2021.

[3] J. H. Park, G. Yun, M. Yi Chang, N. T. Nguyen, S. Lee, J. Choi, S. H.
Noh, and Y.-R. Choi, "HetPipe: Enabling Large DNN Training on
(Whimpy) Heterogeneous GPU Clusters through Integration of Pipelined
Model Parallelism and Data Parallelism," in Proceedings of the 2020
USENIX Annual Technical Conference (USENIX ATC 20), 2020, pp.
307-321.

[4] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
"Memory-Efficient Pipeline-Parallel DNN Training," in International
Conference on Machine Learning, PMLR, 2021, pp. 7937-7947.

[5] B. Yang, J. Zhang, J. Li, C. Ré, C. Aberger, and C. De Sa, "PipeMare:
Asynchronous Pipeline Parallel DNN Training," Proceedings of Machine
Learning and Systems, 2021.

[6] A. Kosson, V. Chiley, A. Venigalla, J. Hestness, and U. Késter,
"Pipelined Backpropagation at Scale: Training Large Models without
Batches," Proceedings of Machine Learning and Systems, 2021.

[7] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, "PipeDream: Generalized
Pipeline Parallelism for DNN Training," in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1-15.

[8] Microsoft, "DeepSpeed: Extreme-Scale Model Training for
Everyone," 2020.

[9] Z. Jia, S. Lin, C. R. Qi, and A. Aiken, "Exploring Hidden Dimensions
in Parallelizing Convolutional Neural Networks," in ICML, 2018, pp.
2279-2288.

[10] Z. Jia, M. Zaharia, and A. Aiken, "Beyond Data and Model
Parallelism for Deep Neural Networks," Proceedings of Machine Learning
and Systems, vol. 1, pp. 1-13, 2019.

[11] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
"NeuroCube: A Programmable Digital Neuromorphic Architecture with
High-Density 3D Memory," in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016, pp.
380-392.

[12] D. E. Hudak and S. G. Abraham, "Compiler Techniques for Data
Partitioning of Sequentially Iterated Parallel Loops,” ACM SIGARCH
Computer Architecture News, vol. 18, no. 3b, pp. 187-200, 1990.

[13] Y. J. Ju and H. Dietz, "Reduction of Cache Coherence Overhead by
Compiler Data Layout and Loop Transformation," in Languages and
Compilers for Parallel Computing: Fourth International Workshop, Santa
Clara, California, USA, August 7-9, 1991 Proceedings 4, Springer, 1992,
pp. 344-358.

[14] J. Mao, Z. Yang, W. Wen, C. Wu, L. Song, K. W. Nixon, X. Chen, H.
Li, and Y. Chen, "MedNN: A Distributed Mobile System with Enhanced
Partition and Deployment for Large-Scale DNNs," in 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), IEEE,
2017, pp. 751-756.

[15] L. Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen, "AccPar:
Tensor Partitioning for Heterogeneous Deep Learning Accelerators," in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), IEEE, 2020, pp. 342-355.

[16] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, "HyPar:
Towards Hybrid Parallelism for Deep Learning Accelerator Array," in
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), IEEE, 2019, pp. 56-68.

[17] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B.
Catanzaro, "Megatron-LM: Training Multi-Billion Parameter Language
Models Using Model Parallelism," arXiv preprint arXiv:1909.08053, 2019.
[18] J. Song, J. Yim, J. Jung, H. Jang, H.-J. Kim, Y. Kim, and J. Lee,
"Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism
Aware Communication Compression," in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2023, pp. 560-573.

Digital science VOLUME 3, 2024

[19] V. Codreanu, D. Podareanu, and V. Saletore, "Scale Out for Large
Minibatches SGD: Residual Network Training on ImageNet-1k with
Improved Accuracy and Reduced Time to Train," arXiv preprint
arXiv:1711.04291, 2017.

[20] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai,
G. R. Ganger, P. B. Gibbons, et al., "Exploiting Bounded Staleness to
Speed Up Big Data Analytics," in 2014 USENIX Annual Technical
Conference (USENIX ATC 14), 2014, pp. 37-48.

[21] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing,
"GeePS: Scalable Deep Learning on Distributed GPUs with a GPU-
Specialized Parameter Server," in Proceedings of the Eleventh European
Conference on Computer Systems, 2016, pp. 1-16.

[22] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M.
Ranzato, A. Senior, P. Tucker, K. Yang, et al., "Large Scale Distributed
Deep Networks," Advances in Neural Information Processing Systems, vol.
25,2012.

[23] J. M. Tarnawski, D. Narayanan, and A. Phanishayee, "Piper:
Multidimensional Planner for DNN Parallelization," Advances in Neural
Information Processing Systems, vol. 34, pp. 24829-24840, 2021.

[24] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
"Memory-Efficient Pipeline-Parallel DNN Training," in International
Conference on Machine Learning, PMLR, 2021, pp. 7937-7947.

[25] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, "ZeRO: Memory
Optimizations Toward Training Trillion Parameter Models," in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE, 2020, pp. 1-16.

[26] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, "ZeRO-
Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep
Learning," in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp. 1-
14.

[27] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
A. Krishnamurthy, et al., "Learning to Optimize Tensor Programs,"
Advances in Neural Information Processing Systems, vol. 31, 2018.

[28] L. Zheng, C. Jia, M. Sun, W. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J.
Yang, D. Zhuo, K. Sen, et al., "Ansor: Generating High-Performance
Tensor Programs for Deep Learning," in Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation, 2020.

[29] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, et al., "Interstellar: Using Halide's Scheduling Language
to Analyze DNN Accelerators," in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020.

[30] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, "Optimization by
Simulated Annealing," Science, vol. 220, no. 4598, pp. 671-680, 1983.
[31] A. Adams, K. Ma, L. Anderson, R. Baghdadi, M. Li, T.-M. Gharbi, B.
Steiner, S. Johnson, K. Fatahalian, F. Durand, et al., "Learning to Optimize
Halide with Tree Search and Random Programs," ACM Transactions on
Graphics, vol. 38, no. 4, p. 121, 2019.

[32] P. Tillet, H.-T. Kung, and D. Cox, "Triton: An Intermediate
Language and Compiler for Tiled Neural Network Computations," in
Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, 2019.

[33] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T.
Krishna, "Understanding Reuse, Performance, and Hardware Cost of DNN
Dataflow: A Data-Centric Approach," in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019.

[34] L. Zheng, C. Jia, M. Sun, W. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J.
Yang, D. Zhuo, K. Sen, et al., "Ansor: Generating High-Performance
Tensor Programs for Deep Learning," in Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation, 2020.

[35] L. Zheng, C. Jia, M. Sun, W. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J.
Yang, D. Zhuo, K. Sen, et al., "Ansor: Generating High-Performance
Tensor Programs for Deep Learning," in Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation, 2020..

