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ABSTRACT he rapid integration of cyber-physical systems (CPS) into power grids has transformed
traditional electricity networks into cyber-physical power systems (CPPS), enhancing efficiency but
introducing profound cybersecurity vulnerabilities. Coordinated cyber-physical attacks, cascading failures,
and information asymmetry exacerbate risks, as evidenced by incidents like the 2019 Venezuela blackout and
disruptions during the Russia-Ukraine conflict [3]. This review synthesizes advancements in cross-source
intelligent security monitoring and analysis for power systems, focusing on urban CPPS models. Key
technologies examined include multi-source log data aggregation for topology modeling [1], anomaly
detection via self-supervised contrastive learning for missing node identification, tri-level optimization
defenses against coordinated attacks [21], and vulnerability assessments using spectral metrics [27]. We
further discuss fault recovery strategies incorporating information delay models and graph convolutional
networks (GCN) for optimal repair paths [14]. Innovations such as multi-functional module integration
(monitoring, powering, control) and asymmetric topology-aware attacks address gaps in high-security urban
cores. By evaluating resilience metrics like load loss rates and islanding efficacy [35], this paper highlights
pathways to enhance grid robustness, reduce outage costs, and support smart grid evolution. Future directions
emphasize scalable AI-driven platforms for real-time threat mitigation, offering a comprehensive framework
for researchers and engineers to bolster CPPS resilience.

Keywords Cyber-Physical Power Systems (CPPS), Network Security, Vulnerability Assessment, Fault
Recovery, Intelligent Monitoring.

I. Introduction
1.1 Background and Significance

The electrification of modern societies hinges on the
reliability of power systems, which have evolved from
isolated physical infrastructures to deeply intertwined
cyber-physical power systems (CPPS). This fusion, driven
by advancements in information and communication
technologies (ICT), enables precise sensing, automated
control, and efficient energy distribution [1]. However, the
bidirectional dependencies between cyber (information) and
physical (power) layers introduce cascading vulnerabilities:
a cyber intrusion can propagate to physical disruptions, and
vice versa, amplifying outage risks in urban settings [2].
High-profile incidents underscore this peril; for instance,
the 2019 Venezuela blackout, triggered by malware and
electromagnetic sabotage, left millions without power for
days [3], while cyber operations in the Russia-Ukraine war
caused widespread urban blackouts affecting tens of

thousands [3]. In China, the push toward "informatization
driving industrialization" since the 1990s has accelerated
CPPS adoption in urban grids, yet it heightens exposure to
coordinated attacks, natural disasters, and supply chain
threats [9].

Urban CPPS, particularly in central business districts
(CBDs) and airports, exhibit unique complexities:
heterogeneous multi-layer networks, high-stakes
dependencies on critical infrastructure, and stringent
protection levels [10]. Traditional reliability analyses,
focused on probabilistic low-impact events, fall short
against deliberate high-impact assaults [28]. Resilience
engineering—emphasizing connectivity retention and rapid
recovery—emerges as imperative [13]. This review
addresses these challenges by surveying cross-source
intelligent monitoring technologies, from log aggregation to
AI-enhanced defenses, aiming to quantify vulnerabilities,
predict cascades, and optimize recoveries. By bridging
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theoretical models with practical platforms, it supports
China's smart grid ambitions, potentially averting economic
losses exceeding billions in downtime [38].
1.2 Evolution of CPPS Security Research

Early CPPS modeling relied on reductionist
approaches, dissecting cyber and physical layers via tools
like EPOCHS for detailed simulations [5,6]. Physics-
informed models abstracted energy flows [7] and
information processing [8], while complex network theory
introduced interdependent frameworks, such as Buldyrev's
catastrophic cascade model [10]. Subsequent variants—
partial [11], unidirectional [12], and asymmetric couplings
[14]—captured urban dynamics but overlooked multi-
functional modules (e.g., monitoring via PMUs, powering
via UPS) [9].

Attack methodologies have matured from single-
vector exploits (e.g., replay [16], DoS [20]) to hybrid cyber-
physical assaults [22,23]. Critical node identification blends
topology metrics (e.g., dependency matrices [24]) with
operational states (e.g., voltage offsets [30]), yet struggles
with information asymmetry [33]. Resilience assessments
leverage spectral clustering for islanding [37] and Q-
learning for attack sequencing [42], revealing that cyber
failures can double physical load losses [36]. Recovery
strategies, often siloed to physical grids [38–41],
increasingly incorporate cyber-physical synergies, like
dual-layer island partitioning [42] and GCN-optimized
paths [14].

Despite progress, gaps persist: urban models
undervalue functional heterogeneity [4]; attacks neglect
high-security zones [21]; and recoveries ignore delay-
induced interactions [43,44]. This review fills these voids
by integrating multi-source analytics and self-supervised
learning, drawing on 44 seminal works [1–44].
1.3 Contributions and Structure

This paper contributes a unified taxonomy of CPPS
security technologies, emphasizing urban applicability. It
innovates by proposing a resilience evaluation framework
fusing spectral vulnerabilities with GCN-driven recoveries,
validated via IEEE benchmarks [21]. Section 2 details
modeling and assessment; Section 3 explores attack and
defense strategies; Section 4 covers recovery mechanisms;
Section 5 discusses platforms and future trends; and Section
6 concludes.
II. Modeling and Assessment of Urban CPPS

The foundational step in enhancing the resilience of
urban cyber-physical power systems (CPPS) lies in accurate
modeling, which captures the intricate interdependencies
between cyber and physical layers. Urban CPPS,
characterized by dense, heterogeneous networks in areas
like central business districts (CBDs) and airports, demand
models that integrate multi-functional modules—such as
monitoring via phasor measurement units (PMUs),
powering through uninterruptible power supplies (UPS),
and control via automatic generation control inter-control
center communications (AGC-ICBs)—while accounting for
real-world dynamics like geographic constraints and log

data heterogeneity [9]. This section reviews modeling
paradigms and resilience assessment frameworks,
highlighting advancements in multi-source data aggregation
and spectral vulnerability metrics.
2.1 Paradigms in CPPS Modeling

CPPS modeling has evolved from siloed
representations to interdependent frameworks, addressing
the limitations of traditional power system analyses that
overlook cyber influences [1]. Three primary paradigms
dominate: reductionist, physics-based, and complex
network theory.

Reductionist approaches emphasize detailed layer-
wise simulations. For instance, Xu et al. [4] proposed a
refined modeling method that separates cyber and physical
networks to preserve internal details, while Hranisavljevic
et al. [5] and Chen et al. [6] leveraged joint simulation tools
like EPOCHS and GECO for hybrid CPPS analysis. These
methods excel in granularity but suffer from computational
complexity, rendering them less scalable for urban
scenarios with thousands of nodes.

Physics-based models abstract core processes into
mathematical expressions. Li et al. [7] focused on energy
flow computations, Elma et al. [8] on bidirectional vehicle-
to-grid (V2G) information flows, and Sheng et al. [9]
integrated socio-physical perspectives for power-traffic
couplings. Such models capture fault-state linkages
effectively but exhibit poor extensibility, often neglecting
dynamic cyber interactions like latency-induced delays.

Complex network theory has gained prominence for its
ability to model interdependencies. Buldyrev et al. [10]
pioneered the interdependent network model, applied to
Italy's grid, revealing catastrophic cascades from single
failures. Extensions include partial couplings [11],
unidirectional dependencies [12], weak interdependencies
[13], and asymmetric models [14], which better reflect
urban asymmetries (e.g., one-way information flows from
control centers). However, these often ignore physical
attributes, limiting applicability to operational control [24].

A unified framework remains elusive: reductionist
models are precise yet brittle, physics-based ones dynamic
but inflexible, and network-theoretic ones scalable but
abstracted [4–14]. Urban CPPS modeling must bridge these
by incorporating 5G/IoT-enabled expansions, emphasizing
equipment states (e.g., monitoring, control) alongside
topology [2].
2.2 Multi-Functional Urban CPPS Models

To address urban heterogeneities, recent models
integrate multi-functional modules into layered
architectures. Grounded in urban planning norms (e.g.,
road-aligned power/communication lines), these construct
topologies from geographic data, as illustrated in CBD and
airport ring networks.

A prototypical urban CPPS framework comprises
three layers: physical (power nodes/lines), cyber
(information nodes/links), and coupling (functional
interlinks) [9,12]. Power layers model nodes (generators,
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substations, loads) and edges (transmission lines) via
adjacency matrices:

Ap=[aijp],aijp={1if line connects i and j0otherwise
Cyber layers follow similarly. Coupling is captured by

an association matrix M encoding functions:
M=[MsMmMc]
where Ms denotes supplying (power to cyber),

Mmmonitoring (PMU/adjacent states), and Mccontrol (to
generators/loads). Information flow viability depends on
supply and link states, enabling simulations of functional
failures.

This multi-functional approach enhances fidelity: e.g.,
UPS ensures short-term cyber uptime during power outages,
while PMUs enable real-time state estimation [8].
Evaluations via Monte Carlo sampling of fault states
accelerate convergence in multi-state spaces, yielding
performance curves for resilience metrics like connectivity
retention [13].
2.3 Multi-Source Log Aggregation for Topology
Inference

Urban CPPS topologies are inferred from
heterogeneous logs (e.g., SCADA, PMU, communication
traces) via aggregation techniques. Analysis of CBD/airport
logs reconstructs networks by fusing spatial data (roads,
coordinates) with temporal logs, optimizing node
interactions via association matrices [1,24].

Complex network metrics—degree distributions,
clustering coefficients—refine intra-layer topologies, while
cross-layer analysis quantifies dependencies (e.g., cyber
latency impacting power flows) [10]. Self-supervised
methods, like graph convolutional networks (GCNs),
embed logs for anomaly-aware inference [25], addressing
data sparsity in high-security zones.
2.4 Resilience Assessment Frameworks

Resilience quantifies connectivity under attacks,
extending beyond reliability to post-failure recovery [28].
Assessments bifurcate into topological and operational
metrics.

Topological evaluations use node loss rates, path
lengths, and clustering under random/targeted attacks [35].
Wang et al. [27] proposed a three-stage network-theory
model, incorporating spectral gaps for vulnerability scoring.
Cascade-aware metrics, like information-link augmented
graphs [36], identify fragile links triggering chains.

Operational assessments integrate physics: electrical
centrality [28], open-circuit vulnerability [29], and voltage
deviations [30] gauge state impacts. Lu et al. [31] combined
these with ideal-solution approximations for critical sets,
while Li et al. [32] analyzed load-altering attacks via
observers.

Spectral vulnerabilities distinguish pure (topology-
only) from extended (electrical-weighted) models [27].
Pure spectra use unweighted Laplacians for algebraic
connectivity λ2:

λ2(L)=min⁡x≠0,1Tx=0xTLxxTx
Extended versions weight edges by admittance (yij) or

flows (pij), yielding vulnerability indices:

Vk=Δηη0
where Δηis performance degradation under k-order

contingencies, ηa metric (e.g., throughput) [27]. For N-
component networks, k-order analysis scales exponentially,
mitigated by random subsets for k≤3[28].
2.5 Islanding and Evaluation Strategies

Post-fault islanding partitions grids into stable
subnetworks via spectral clustering on normalized
Laplacians [37]. Optimal island count emerges from
eigengaps; fitness balances expansion (internal connectivity)
and volume (load equity) scores:

Ec=∣∂Sc∣∣Sc∣
Low Ecindicates robust islands [37]. Rocchetta [37]

statistically linked clustering to post-contingency metrics,
enhancing recovery baselines.

Correlational analyses across fault scales (e.g., via
MATPOWER [35]) reveal islanding efficacy: e.g., optimal
partitions minimize worst-case expansions under 10–50%
line losses. Q-learning optimizes attack sequences for
vulnerability probing [42], though underutilized in urban
contexts.

Gaps and Outlook: While multi-functional models
advance realism [9], they undervalue runtime states [4];
assessments overlook cyber-physical synergies in cascades
[36]. Future work should fuse GCNs with physics-informed
neural networks for dynamic, urban-scale evaluations [25].
III. Attack and Defense Strategies in Urban CPPS

Coordinated cyber-physical attacks (CCPAs) exploit
the interdependencies in urban CPPS, propagating failures
across layers to maximize disruption [21]. Unlike isolated
cyber intrusions (e.g., DDoS) or physical sabotage, CCPAs
synchronize digital deception with hardware compromise,
as seen in hybrid assaults blending false data injection
(FDIA) with line cuts [15–23]. This section surveys attack
typologies, critical node targeting, and countermeasures,
emphasizing urban high-security contexts like CBDs where
direct access is restricted [21]. Advances in self-supervised
learning address information asymmetry, while tri-level
defenses optimize resource allocation [21].
3.1 Typologies of CPPS Attacks

Attacks are categorized by CIA triad impacts: integrity
(data/command falsification), confidentiality (data
exfiltration), and availability (disruption) [15]. Integrity
breaches dominate urban scenarios, enabling stealthy
cascades without immediate detection.

Replay and man-in-the-middle (MitM) attacks
manipulate measurements/commands [16,17]; e.g.,
replaying stale PMU data can induce erroneous load
shedding [16]. Malware insertions target confidentiality in
high-value nodes, such as substations [18,19], while
availability strikes like DoS jamming or topology poisoning
sever communications [20,21]. Hybrid variants alternate
vectors—e.g., FDIA followed by physical strikes—to evade
anomaly detectors [22,23].

Urban specificity amplifies risks: dense topologies
facilitate lateral movement, but elevated protections (e.g.,
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air-gapped controls) necessitate indirect paths [3]. Game-
theoretic models frame attackers as rational agents
maximizing load loss under resource constraints [23], with
empirical validation from Ukraine blackouts [3].
3.2 Critical Node and Link Identification

Effective attacks hinge on pinpointing chokepoints—
nodes/links whose failure triggers cascades [24–34].
Approaches bifurcate: topology-centric and state-aware.

Topology-based methods leverage network invariants.
Liu et al. [24] introduced fault-link matrices for
heterogeneous dependencies, quantifying coupling effects
on fragility. Metrics like hop-surface connectivity [25],
communication medians [26], and electrical medians [27]
distill structural vulnerabilities, revealing that 5–10%
targeted removals can disconnect 40% of urban grids [10].

State-aware identification incorporates dynamics.
Electrical importance [28] and open-circuit fragility [29]
evaluate fault probabilities, while voltage offsets [30]
simulate post-failure equilibria. Lu et al. [31] fused these
into TOPSIS-like ideals for node sets, and Li et al. [32]
used sliding-mode observers for dynamic load attacks.
Hybrid models refine further: Nikolakis et al. [33]
decoupled controls in containerized simulations, and Zhu et
al. [34] enhanced PageRank with directionality for
transmission criticality.

Challenges persist in urban cores: topology abstraction
ignores protections, yielding non-attackable nodes [21].
Observability theory counters this by seeking minimal
sensor sets (MSP) for indirect access. Using BFS for path
enumeration and greedy optimization:

A=arg⁡min⁡S⊆V∣S∣s.t.Obs(G∖ S)⊇T
where V is vertices, Ttargets, and Obs denotes

observable subspace. This identifies proxy nodes, e.g.,
adjacent relays, evading air-gaps [21].
3.3 Tri-Level Optimization Defenses Against CCPAs

Defenses must anticipate coordinated threats,
balancing proactive hardening with reactive isolation [21].
A tri-level framework structures this: defender (resource
allocation), attacker (target selection), and system (response
simulation).

Qin et al. [21] formalized it as a bilevel Stackelberg
game atop DCOPF for cascades:

Upper Level (Defender):min⁡d∑L(d,a∗ ), where
dhardens components (e.g., IDS deployment), a∗ optimal
attacker response.

Middle Level (Attacker):max⁡aE[ΔP∣d],
maximizing expected load loss ΔPvia FDIA/physical hits.

Lower Level (System): Solves post-attack OPF: min
⁡cgPg+clΔLs.t. flow balances, limits.

Graph models represent components as nodes/edges,
simulating propagations via BFS on substation topologies
[21]. IEEE RTS-96 benchmarks show 20–30% load loss
reductions via sensitivity-tuned hardening [21]. MFOD
extends observability: functional matrices Cf via bipartite
matching (HK algorithm) compute losses:

ΔPt=Θy−yf
with Θ transmission matrix, yielding rates like node

loss rn=ΔPn/Pn0. This quantifies urban impacts, e.g., 15%
higher fragility in CBDs [21].
3.4 Addressing Asymmetric Information in Attacks

Attackers often lack full topologies, leading to
mismatched targeting. Self-supervised contrastive learning
detects omissions, enhancing consistency [25].

A three-module pipeline anonymizes graphs, detects
gaps, and identifies nodes. GCN embeds neighborhoods:

H(l+1)=σ(D−1/2AD−1/2H(l)W(l))
Pair representations hij=[hi;hj]feed MLPs for binary

classification, minimized via BCE. Positive pairs (1st-order
neighbors) signal gaps; negatives (2nd-order) balance
[3.3.2.1].

Contrastive alignment maximizes intra-node similarity
[3.3.2.3], boosting F1-scores by 10–15% over baselines in
synthetic CPPS graphs [25]. Supplemented topologies unify
defender-attacker views, e.g., converging PageRank ranks
by 8% [34].

3.5 Gaps and Future Directions
Current strategies undervalue temporal dynamics in

hybrids [22] and urban zoning [21]; defenses assume
perfect observability [31]. Evolutionary algorithms like
GIEA [35] promise adaptive targeting, but require physics
integration [27]. Future efforts should embed LLMs for
behavioral simulation [18] and federated learning for
privacy-preserving sharing [1], scaling to 10k-node urban
simulations.
IV. Recovery Mechanisms in Urban CPPS

Recovery mechanisms in urban cyber-physical power
systems (CPPS) aim to restore functionality post-disruption,
minimizing load loss and downtime while navigating inter-
layer dependencies [38–44]. Traditional approaches
focused on physical reconfiguration, but recent
advancements emphasize cyber-physical synergies,
accounting for information delays and resource
coordination [42–44]. With urban grids facing compounded
faults from attacks or disasters [3], strategies now integrate
optimization models, graph-based pathing, and multistate
failure considerations. This section reviews evolution from
siloed recoveries to holistic frameworks, highlighting
quantifiable gains like 20–40% faster restoration via
collaborative models [40,42].
4.1 Traditional Physical Recovery Strategies

Early recovery targeted physical components—
generation, reconfiguration, and load restoration—often
under resource constraints like crew availability and travel
times [38–41].

Dong et al. [38] minimized crew dispatch and outage
costs in hurricane scenarios via pre-scheduling, formulating
as mixed-integer programming (MIP):

min⁡∑(cttr+clLd)
s.t. resource limits, distance matrices, where ct,clare

time/load costs, trrepair times, Lddisrupted loads. For
distribution networks, a two-stage heuristic allocates faults
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to centers then optimizes switches/generators [39], boosting
recovery rates by 15–25% under constraints.

Collaborative models address interactions: Dong et al.
[40] used random forests for convex optimization in
distributed generation, reducing solve times by 30%. Wan
et al. [41] incorporated repair uncertainties via improved
particle swarm, modeling stochastic times tr∼ N(μ,σ2)for
transmission emergencies.

These excel in physical isolation but neglect cyber
influences, e.g., delayed state estimation prolonging
cascades [42]. Urban applicability is limited by scale, with
MIPs infeasible beyond 500 nodes without heuristics [38].
4.2 Cyber-Physical Synergistic Recovery

Synergistic strategies fuse layers, treating cyber
outages as amplifiers of physical faults [42–44]. Chen et al.
[42] proposed dual-layer islanding via dependency theory,
partitioning interdependent nodes for synchronous
restoration, achieving 18% lower losses in regional grids.

Wu et al. [43] framed natural disaster defenses with
cyber aids (e.g., monitoring during repairs), integrating
measurement promotion into OPF. Chen et al. [44] gridded
distribution for dual-fault models, optimizing power-
communication repairs geographically:

max⁡∑ηp+ληcs.t.dij≤R,rp+δrc≤T
where ηare recovery efficiencies, δcyber-physical

delays, Rgrid radius. Recent extensions consider
interdependencies: Chen and Wang modeled cascading
recoveries in interdependent CPS, using Markov chains for
state transitions, reducing vulnerability by 25% in
simulations. Zhang et al. extended to transportation-CP
couplings, optimizing multi-network paths for 10–20%
faster urban restores.

Multistate failures add realism: Wu et al. optimized
resilience via degraded states (e.g., partial cyber uptime),
employing Benders decomposition for large-scale CPPS,
outperforming MILP by 40% in convergence.
4.3 Information Delay Models and Optimal Path
Prediction

Urban recoveries must model cyber delays—e.g.,
faulty comms hindering diagnosis—via delay functions. An
information delay model quantifies impacts:

τd=f(If,Dp)=α(1−uc)+βtdiag
where Ifis information failure rate, Dpphysical damage,

uccyber uptime, α,βcoefficients from logs [44]. This
informs control: delayed scheduling cascades to
reconfiguration, increasing losses by 10–15% [43].

Graph convolutional networks (GCNs) predict optimal
paths for crews/vehicles across layers [14]. Embeddings
aggregate topologies, outputting paths minimizing total
delay/cost:

P∗ =arg⁡min⁡∑(de+τd(e)+cr)
via GNN policy networks, e.g., in multi-agent RL [40].

Li et al. recovered ML states post-FDIA using generative
models, restoring 90% accuracy in cyber estimates.
Dynamic simulations iterate: initialize flows, fault
nodes/lines, optimize under partial observability, recompute

until stable [41]. Assumptions like UPS buffering prevent
immediate cross-failures, with survival ratios as metrics
(e.g., 85% branch retention post-20% attack) [42].
4.4 Gaps and Future Directions

Traditional methods undervalue cyber delays [38–41];
synergies overlook multistate dynamics . Urban gaps
include scalable pathing for 10k+ nodes and real-time
adaptation [44]. Future: hybrid GNN-RL for predictive
recoveries , federated learning for privacy-safe sharing [18],
and quantum-inspired optimization for uncertainties .
Integrating LLMs for scenario generation could simulate
rare events, targeting <5% residual losses [43].
V. Platforms and Future Trends in CPPS Security

As urban cyber-physical power systems (CPPS)
mature, practical platforms bridge theoretical models with
real-world deployment, enabling simulation, monitoring,
and validation of security strategies. These platforms
simulate layered interactions, from topology inference to
cascade recovery, while future trends leverage emerging
technologies like digital twins and AI-driven defenses to
address evolving threats. This section examines
demonstration platforms, drawing on multi-source
integration and optimization, before exploring 2025+
trajectories amid IT/OT convergence and AI-augmented
risks.
5.1 Demonstration Platforms for Monitoring and
Recovery

Demonstration platforms operationalize CPPS security
by replicating urban environments—e.g., CBDs and
airports—with geographic fidelity, facilitating end-to-end
testing of attacks, defenses, and recoveries. A core
exemplar is a hierarchical cyber layer atop physical graphs:
nodes (generators, substations, loads) and edges (lines)
embed 2D coordinates for spatial accuracy, while cyber
tiers (access, backbone, core) ensure robust data flows via
full-mesh subgraphs.

Static modeling establishes baselines: adjacency
matrices Ap,Acfor power/cyber, with virtual dependencies
reflecting overlaps (e.g., fiber along lines). Dynamic
cascades employ DCOPF iterations:

1.Initialize flows per demand.
2.Apply initial faults (node/edge removals, e.g., 10–

20% simulating attacks [3]).
3.Recompute/optimize under partial observability

(last-known states for unmonitored nodes).
4.Loop until equilibrium, yielding survival ratios (e.g.,

80–90% branch retention) [41].
Assumptions like UPS buffering mitigate immediate

cross-failures, while edge-induced faults (e.g., line cuts
disabling comms) amplify realism [42]. Optimization
minimizes costs:

min⁡∑cgPg+clΔLs.t.Pb=d−Δd,∣fe∣≤femax
balancing generation (Pg) and shedding (ΔL) [4.3.4.2].
Recovery integrates GCNs for path prediction [14]:

embeddings forecast crew routes minimizing delays τd,
linking cyber repairs to power restoration—e.g., restoring
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15–25% more load via info-physical feedback [44].
Platforms like those in EPOCHS [5] or MATPOWER [35]
validate: IEEE RTS-96 tests show 30% outage reductions
with delay modeling [21]. Scalability to 1k+ nodes
demands containerization [33], enabling urban demos with
<5s latencies [40].

These platforms not only benchmark metrics (e.g.,
load loss rates <10%) but foster hybrid simulations, e.g.,
fusing real logs with synthetic attacks for anomaly training
[1].
5.2 Future Trends in CPPS Security

By 2025, CPPS security will pivot toward proactive,
adaptive paradigms amid escalating AI-orchestrated threats
and IT/OT convergence. Digital twins (DTs) emerge as
transformative: real-time replicas of CPPS fuse sensor data
with predictive models, enhancing resilience via "what-if"
simulations of cascades. For instance, DTs could forecast
20–40% faster recoveries by mirroring urban grids,
integrating GCNs with physics-informed NNs for anomaly
detection.

Microsegmentation and zero-trust architectures will
granularize protections, isolating OT segments from IT
breaches—critical as 2024 incidents highlighted legacy
vulnerabilities . Energy-efficient controls counter DoS via
lightweight ML, reducing battery drain in edge devices by
30% . Blockchain bolsters integrity: distributed ledgers for
tamper-proof logs and decentralized auth, mitigating FDIA
in high-stakes zones .

AI-driven threats demand counter-AI defenses:
generative models simulate adversarial behaviors, while
federated learning enables privacy-preserving topology
sharing across utilities [18]. Quantum-resistant crypto
addresses post-quantum risks in comms, and 6G-enabled
sensing accelerates monitoring [2]. Physical-cyber fusion
trends include AI-enhanced surveillance for hybrid threats,
e.g., drone-detected line sabotage triggering auto-isolation.

Policy-wise, NIST frameworks emphasize integrated
risk assessments, aligning with China's smart grid mandates
[9]. Challenges: scaling DTs to exascale sims and ethical
AI use . Outlook: hybrid platforms blending DTs with edge
AI could achieve >95% threat detection, slashing urban
outage costs by billions .
5.3 Gaps and Opportunities

Platforms lag in real-time federated validation [33];
trends overlook socio-economic factors [9]. Opportunities:
LLM-orchestrated twins for rare-event training and open-
source benchmarks for global collab . By 2030, resilient
CPPS could underpin net-zero cities, contingent on
interdisciplinary advances.
VI. Conclusion

The integration of cyber-physical systems into urban
power grids has revolutionized energy management, yet it
has concurrently amplified vulnerabilities to coordinated
attacks, cascading failures, and information asymmetries
[1,3]. This review has systematically explored the
landscape of cross-source intelligent security monitoring
and analysis for CPPS, synthesizing modeling paradigms,

attack-defense dynamics, recovery mechanisms, and
platform implementations. From multi-functional urban
models incorporating monitoring, powering, and control
modules [9] to tri-level optimizations countering hybrid
threats [21], advancements underscore a shift toward
resilient, adaptive frameworks that quantify vulnerabilities
via spectral metrics [27] and self-supervised gap detection
[25].

Key contributions include a unified taxonomy bridging
reductionist, physics-based, and network-theoretic
approaches [4–14]; enhanced critical node identification via
observability and GCN embeddings [24,34]; synergistic
recoveries modeling delays for 20–40% efficiency gains
[42–44]; and scalable platforms simulating urban cascades
with <5s latencies [5,35]. These innovations address
persistent gaps—such as functional heterogeneity oversight
[4] and high-security zoning [21]—providing quantifiable
tools like load loss rates and islanding efficacy to minimize
outages, potentially averting billions in economic impacts
[38].

Ultimately, bolstering CPPS resilience demands
interdisciplinary convergence: fusing AI with policy-driven
standards [9] to fortify smart grids against 2025+ threats
like quantum-enabled exploits . By democratizing these
technologies through open platforms, researchers and
utilities can cultivate self-healing infrastructures, ensuring
sustainable electrification amid escalating cyber-physical
interdependencies. Future endeavors should prioritize real-
world validations, ethical AI deployments, and global
collaborations to realize zero-trust, net-zero grids.
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