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ABSTRACT Unmanned aerial vehicles (UAVs) equipped with long-endurance remote sensing capabilities
have revolutionized applications in economic development, national defense, emergency response, and
disaster monitoring. However, traditional centralized processing paradigms suffer from high latency, resource
inefficiency, and poor adaptability to dynamic low-altitude environments. This survey reviews advancements
in multimodal large models (MLMs) for precise detection and perception in complex low-altitude scenarios,
emphasizing three core challenges: enhancing intelligent terminal perception for adaptive learning, bolstering
multi-UAV collaborative coverage through federated evolution, and achieving high-fidelity 3D perception
via multimodal fusion. We synthesize recent developments in self-evolving online learning frameworks,
asynchronous distributed federated optimization, and Transformer-based MLMs tailored for heterogeneous
sensor data (e.g., LiDAR and multi-view cameras). Key contributions include a taxonomy of adaptive
algorithms mitigating catastrophic forgetting and data heterogeneity, alongside benchmarks for edge
deployment in resource-constrained UAV systems. By highlighting gaps in unsupervised multimodal
alignment and real-time scalability, this work outlines future directions toward autonomous, resilient UAV
swarms, fostering innovations in edge intelligence for spatial information technologies.

Keywords Multimodal large models, UAV perception, low-altitude environments, federated learning, self-
evolving adaptation.

I. Introduction
Unmanned aerial vehicles (UAVs) serve as pivotal

platforms for multi-scale, multi-perspective observation of
terrestrial features, underpinning critical domains such as
economic growth, national security, disaster mitigation, and
resource surveying [1]. The integration of long-endurance
remote sensing—spanning satellites and UAVs—has
enabled unprecedented data acquisition, yet the prevailing
"edge collection-centralized processing" workflow
introduces bottlenecks: prolonged transmission delays,
excessive bandwidth demands, and sluggish model updates
ill-suited to the volatility of low-altitude operations [2]. As
environments grow increasingly complex—with dynamic
occlusions, heterogeneous threats (e.g., smoke, drones), and
sparse annotations—there is an urgent need to shift
computation to the edge, empowering UAVs with
autonomous, self-evolving intelligence [3].

This paradigm shift aligns with global initiatives
accelerating edge-native capabilities. The U.S. DARPA
Blackjack program envisions low-Earth orbit constellations
with in-orbit collaboration and decision-making [4], while
the EU's Future Sky program and Japan's 2035 drone
swarm roadmap prioritize collaborative autonomy [5]. In
parallel, multimodal large models (MLMs), building on
Transformer architectures, have surged as enablers for
fusing diverse sensor streams (e.g., visual, LiDAR, spectral
data), surpassing unimodal limits in 3D scene
understanding [6]. Yet, deploying MLMs on UAVs
confronts tripartite hurdles: (i) high adaptability—online
learning must counter catastrophic forgetting in streaming,
unlabeled data [7]; (ii) high collaboration—federated
systems require robust handling of data heterogeneity and
topological flux in multi-UAV swarms [8]; and (iii) high
perception fidelity—cross-modal alignment demands
efficient fusion without exhaustive annotations [9].
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This survey provides a comprehensive synthesis of
MLM-driven technologies for precise low-altitude
perception, distilling theoretical foundations, algorithmic
innovations, and empirical validations. Unlike prior reviews
focused on generic multimodal fusion [10] or federated
learning in static networks [11], we center on UAV-specific
edge constraints, offering a structured lens through self-
adaptive terminal enhancement, multi-agent coverage
amplification, and MLM-centric 3D reconstruction. Section
2 delineates intelligent terminal perception advancements,
including self-supervised online paradigms. Section 3
explores multi-UAV federated evolution for coverage.
Section 4 delves into Transformer-based MLMs for
multimodal sensing. Section 5 benchmarks performance
metrics and deployment challenges, concluding with
prospective trajectories toward fully autonomous aerial
ecosystems.

By bridging these silos, this work not only illuminates
the trajectory from isolated UAV sensing to symbiotic
swarms but also equips researchers with actionable insights
to propel edge intelligence beyond current frontiers.
II. Intelligent Terminal Perception Advancements

Intelligent terminal perception forms the cornerstone
of edge-enabled UAV systems, enabling real-time
adaptation to dynamic, unlabeled data streams in complex
low-altitude environments. Traditional offline learning
paradigms falter under the deluge of heterogeneous aerial
imagery—characterized by scale variations, spectral
complexities, and sparse annotations—leading to
inefficiencies in resource-constrained platforms [12].
Recent advancements pivot toward self-supervised online
learning frameworks that facilitate incremental,
autonomous model evolution, mitigating catastrophic
forgetting while enhancing cross-scene generalization [7].
This section delineates key progress in self-supervised
paradigms, adaptive self-evolving algorithms, dataset
augmentation strategies, and domain-specific adaptations
tailored for UAV remote sensing.
2.1 Cross-Scene Self-Supervised Online Learning

Self-supervised online learning has emerged as a
pivotal technique for UAVs, leveraging unlabeled data
flows to extract transferable knowledge representations
without exhaustive human intervention. By distilling
intrinsic supervisory signals from data perturbations—such
as rotations, spectral shifts, or temporal inconsistencies—
these methods bootstrap robust features for downstream
tasks like object classification, detection, and tracking in
aerial scenes [3].

A foundational approach involves contrastive learning
augmented with domain-invariant alignments. For instance,
RS-FewShotSSL employs a deep self-supervised learner to
classify remote sensing scenes under few-shot constraints,
achieving superior performance on datasets with fewer than
20 labeled samples per class by aligning multi-level
semantic hierarchies [13]. This is particularly salient for
UAVs, where cross-scene transitions (e.g., from urban to
rural terrains) induce distribution shifts; here, adversarial

feature alignment and knowledge distillation reduce
underlying discrepancies, elevating migration efficiency by
up to 15% in benchmarks [14]. Similarly, FastSiam tailors
efficient self-supervised pretraining for multispectral UAV
imagery, utilizing momentum encoders to capture spectral-
spatial correlations, outperforming supervised baselines in
low-data regimes [15].

Mitigating catastrophic forgetting remains central, as
sequential task learning often erodes prior knowledge.
Techniques like hidden knowledge representation
architectures, informed by contrastive-adversarial
objectives, capture domain-invariant invariants, fostering
high-reliability paradigms for streaming aerial data [16].
Empirical validations on SoundingEarth—a crowdsourced
audiovisual dataset—demonstrate that such integrations
yield 20-30% gains in cross-modal transfer for remote
sensing tasks [17]. These paradigms underscore a shift from
static pretraining to continual, edge-deployable learning,
primed for UAVs navigating occluded or adversarial low-
altitude vistas.
2.2 Adaptive Self-Evolving Learning Algorithms

To address the volatility of multi-scene dynamics—
encompassing unordered, non-stationary inputs—adaptive
self-evolving algorithms dynamically refine model
architectures and parameters, emulating biological
evolution via meta-learning and gradient-based exploration
[18]. These methods, rooted in evolutionary computation,
iteratively generate and prune network variants, optimizing
for UAV-specific constraints like computational latency
and energy budgets [19].

Evolutionary strategies, such as those in niche
adaptive elite evolutionary algorithms (NAEEA), adapt
swarm intelligence for clustering in aerial unmanned sensor
networks, reducing energy overhead by 25% through
fitness-guided mutations [20]. For drone perception,
reinforcement learning-infused adaptations enable
pathfinding under incomplete information; adaptive
differential evolution (IADE) dynamically tunes mutation
and crossover rates based on iteration progress and fitness
landscapes, solving single-UAV multitasking with 18%
improved convergence [21]. In multi-drone pursuits, unseen
algorithm zoos—incorporating greedy and collaborative
agents—facilitate teaming via proxy predictors, enhancing
adaptability in simulated low-altitude chases [22].

Catastrophic forgetting is curtailed through
progressive incremental learning, where variational
inference selects evolution strategies on-the-fly, ensuring
stability amid scene flux [23]. For aerial imagery, class-
incremental detectors like those using knowledge
inheritance modules preserve prior task proficiency, with
distillation losses yielding 10-15% retention in incremental
remote sensing object detection [16]. These self-evolving
mechanisms not only bolster UAV autonomy but also pave
the way for federated extensions, as explored in subsequent
sections.
2.3 Dataset Construction and Augmentation for Remote
Sensing Imagery
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The scarcity of annotated aerial datasets hampers UAV
perception; thus, strategic augmentation expands corpora
while preserving semantic fidelity, simulating diverse flight
conditions like varying altitudes or weather perturbations
[24]. Geometric transformations—rotations, flips, scaling—
and advanced synthesis via generative models form the
bedrock, with deep learning-driven augmentations further
enriching multispectral UAV inputs [25].

Recent pipelines, such as those for thermal aerial
enhancement, introduce synthetic drone classes in urban
scenes, augmenting baselines like HIT-UAV-TL to boost
detection recall by 22% [26]. YOLOv9 variants, paired
with transfer learning, apply adjustable augmentations to
UAV vehicle detection datasets, mitigating overfitting in
sparse regimes [27]. Composite augmentations, blending
real and synthesized imagery, address data sparsity in
semantic segmentation; by overlaying perturbations like fog
or shadows, these yield 15% accuracy uplifts on sparse
remote sensing benchmarks [28].

For maritime surveillance, augmentation via Stable
Diffusion generates float-object variants, enhancing SAR
detection algorithms with minimal annotation costs [29].
UAV-specific methods, including mosaic blending and
mixup, simulate construction site variabilities, expanding
datasets tenfold while curbing class imbalances [30]. These
techniques, integrated with self-supervised loops, ensure
scalable, robust training for edge terminals.
2.4 Domain-Specific Online Self-Evolving Learning for
Remote Sensing

Tailoring online paradigms to remote sensing
idiosyncrasies—such as high-resolution scale variances and
spectral intricacies—demands domain-dedicated
frameworks that fuse incremental learning with knowledge
alignment [31]. These evolve models via lightweight,
continual updates, alleviating forgetting through prototype
storage and distillation [32].

In aerial contexts, HDCPAA employs few-shot
incremental learning with prototypes to sustain
classification amid evolving classes, achieving 12% gains
over vanilla continual learners on remote sensing
benchmarks [32]. Knowledge distillation variants, like
those in SIL-LAND, distill segmentation heads for
incremental aerial land-use mapping, preserving 90% prior
performance via uncertainty-aware replays [33]. For UAVs,
ER-PASS integrates experience replay with submodular
selection, countering domain shifts in continual
segmentation and yielding state-of-the-art forgetting
mitigation [34].

Innovations in variational self-adaptation further
enable semi-feedback loops, where minimal human
oversight guides evolution, as in WVA for online tracking
control [35]. Collectively, these advancements forge
resilient, UAV-native perception engines, bridging to
collaborative paradigms in Section 3.
III. Multi-UAV Collaborative Coverage Enhancement

Multi-UAV collaborative coverage enhancement
addresses the imperative for swarm intelligence in low-

altitude operations, where individual drones contend with
limited sensing footprints, topological instabilities, and
heterogeneous data distributions. Traditional centralized
coordination falters under communication bottlenecks and
single-point failures, necessitating distributed paradigms
that amplify collective perception without raw data
exchange [36]. Federated learning (FL) emerges as a
linchpin, enabling model aggregation across UAVs while
preserving privacy and mitigating latency in dynamic
topologies [8]. This section surveys asynchronous
distributed FL frameworks, generalized topological
architectures, federated AutoML integrations, and
knowledge migration techniques, underscoring their role in
self-evolving edge ecosystems for UAV swarms.
3.1 Asynchronous Distributed Optimization in
Federated Learning

Asynchronous distributed optimization decouples
UAV updates from rigid synchronization, accommodating
erratic flight patterns and intermittent links prevalent in
low-altitude swarms [37]. By allowing local iterations to
proceed independently, these methods curtail convergence
delays and model drift, pivotal for real-time tasks like threat
detection amid class imbalances [38].

Core advancements leverage variance-reduced
stochastic gradients with event-driven communication,
where UAVs upload parameters only upon significant
deviations, slashing overhead by 40% in simulated mesh
networks [39]. For instance, FedAvg extensions incorporate
global gradient estimates to rectify local biases, as in
FedProx variants tailored for UAV power constraints,
yielding 25% faster convergence under non-IID data [40].
In multi-target tracking scenarios, dual-decomposition
algorithms distribute Lagrangian relaxations across UAVs,
optimizing trajectories asynchronously while enforcing
coverage constraints [41].

Empirical benchmarks on UAV swarm datasets reveal
robustness: asynchronous FL mitigates stragglers in
heterogeneous fleets, with 15-20% gains in accuracy for
intrusion detection over synchronous baselines [42]. These
optimizations form the bedrock for scalable, resilient
collaboration, transitioning to topological generalizations.
3.2 Generalized Topology Structures for Multi-UAV
High-Performance Computing

UAV swarms often manifest fluid topologies—star,
mesh, or ad-hoc—demanding FL frameworks that
generalize across structures to sustain coverage in contested
environments [43]. Generalized architectures abstract
cloud-edge-end hierarchies, enabling seamless transitions
via multiplier-based consensus protocols [44].

Recent surveys highlight hybrid topologies fusing
NOMA-assisted FL with UAV relays, enhancing spectral
efficiency and coverage by 30% in dense deployments [45].
For instance, decentralized FL over mesh networks
employs gossip protocols for parameter dissemination,
achieving near-centralized performance with 50% reduced
bandwidth in 5G-enabled swarms [46]. In energy-
constrained settings, distributed task assignment via
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auction-based mechanisms optimizes node selection,
extending swarm endurance by 18% while preserving
global optimality [47].

Blockchain-augmented topologies further secure FL
aggregates, countering Byzantine faults in adversarial low-
altitude ops [48]. Validations on real-world UAV fleets
demonstrate 20% uplifts in collaborative mapping fidelity,
underscoring the efficacy of these structures in amplifying
perceptual breadth [49].
3.3 Federated Auto Machine Learning for Edge
Computing

Federated AutoML automates hyperparameter tuning
and architecture search across UAV edges, democratizing
advanced ML amid resource scarcity [50]. By federating
neural architecture search (NAS) with surrogate models,
these paradigms evolve lightweight detectors in-situ,
bypassing exhaustive grid searches [51].

Pioneering works integrate differentiable NAS into FL
rounds, where UAVs collaboratively refine supernets via
reinforcement learning proxies, converging 2x faster than
local AutoML [52]. For drone inspection, cloud-edge-end
FL clusters clients by data similarity, yielding personalized
models with 12% accuracy boosts on heterogeneous sensors
[53]. Adaptive frameworks like EdgeFed dynamically
prune search spaces, curbing energy draw by 35% in IoT-
drone hybrids [54].

Challenges in non-convex landscapes are met with
uncertainty-weighted proxies, as in multi-robot SLAM
extensions, enhancing generalization across swarm variants
[49]. These integrations empower self-orchestrating UAVs,
bridging to knowledge transfer mechanisms.
3.4 Federated Knowledge Migration for Edge Computing

Knowledge migration in FL facilitates cross-UAV
expertise sharing, vital for domain shifts in evolving low-
altitude threats [55]. Transfer learning-infused FL, such as
KIBTL, distills pre-trained encoders via proxy datasets,
accelerating convergence by 40% without data leakage [56].

In UAV networks, CORAL-aligned migrations
harmonize feature statistics across clients, bolstering
personalization in task offloading [57]. For multi-task
swarms, attention-gated transfers balance related objectives,
as in UAV-assisted FL where shared backbones yield 15%
gains in federated IDS [58]. Privacy-preserving variants
employ homomorphic encryption for gradient exchanges,
safeguarding migrations in contested airspace [59].

Simulations on federated UAV benchmarks affirm
efficacy: knowledge-distilled DQN variants optimize load
balancing, reducing energy deviations by 22% [59]. These
techniques culminate in holistic self-evolution, priming
swarms for multimodal perception in Section 4.
IV. Transformer-Based Multimodal Large Models for
Multimodal Sensing

Transformer-based multimodal large models (MLMs)
represent a paradigm shift in UAV sensing, leveraging self-
attention mechanisms to fuse heterogeneous inputs—such
as multi-view cameras, LiDAR point clouds, and spectral
imagery—into coherent 3D representations for low-altitude
navigation [60]. Unlike convolutional backbones,

Transformers excel in capturing long-range dependencies
and cross-modal interactions, enabling precise perception
amid occlusions, varying altitudes, and dynamic threats
[61]. This section explores MLM architectures for 3D
perception, parameter-efficient fine-tuning (PEFT)
adaptations, and asynchronous distributed alignment for
multi-UAV knowledge sharing, drawing on recent
benchmarks and empirical advancements.
4.1 Multimodal Large Models for 3D Perception in
Complex Low-Altitude Environments

At the core of low-altitude 3D perception lies the
unification of diverse sensor modalities via Transformer
encoders, which tokenize inputs into sequences for parallel
processing, mitigating the pitfalls of sequential fusion in
resource-limited UAVs [62]. Modality-specific
tokenizers—e.g., patch-based for images and voxel
encoders for LiDAR—feed into shared Transformer
backbones, facilitating intra- and inter-modal learning
through dynamic set attention and cross-attention blocks
[63].

Pioneering frameworks like UAV3D benchmark
Transformer-driven collaborative 3D detection, aggregating
multi-UAV views to achieve 25% mAP gains over
unimodal baselines on sparse aerial datasets [64]. The
RA3T model exemplifies region-aligned adaptations,
employing 3D sparse convolutions with Transformer
decoders for self-supervised sim-to-real transfer, reducing
domain gaps in urban low-altitude scenes by 18% [65]. For
bird's-eye-view (BEV) mapping, BEVFusion variants
extend Transformers with geometric projections, fusing
camera-LiDAR tokens in 2D/3D spaces to enhance
segmentation fidelity, as validated on nuScenes-UAV
extensions with 15% IoU improvements [66].

Cross-modal interactions are amplified via alternating
partitions: perspective-aligned for semantic bridging and
geometric for depth-aware fusion, circumventing projection
ambiguities through pre-computable offsets [67]. These
models adapt to tasks like 3D object detection and BEV
segmentation, with LSS-based enhancements yielding real-
time inference under 50ms on edge hardware [68].
Benchmarks underscore Transformers' superiority,
outperforming CNNs by 10-20% in multimodal UAV
tracking amid wind perturbations [69].
4.2 Parameter-Efficient Fine-Tuning for Multimodal
Model Adaptation

Deploying MLMs on UAVs demands PEFT to curb
parameter explosion, enabling task-specific tuning with
minimal overhead—critical for memory-constrained flights
[70]. Techniques like adapters and low-rank adaptations
(LoRA) insert lightweight modules into frozen backbones,
preserving pre-trained knowledge while aligning to aerial
domains [71].

The Position Insertion Module (PIN) innovates by
injecting learnable spatial embeddings post-visual encoder,
optimized via negative log-likelihood on synthetic
bounding-box prompts, unlocking localization in vision-
language models (VLMs) without altering core parameters
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[72]. Empirical studies on MLLMs reveal PEFT variants
like QLoRA yielding 12% accuracy boosts for UAV crack
segmentation, fine-tuning only 0.1% of weights on
multimodal asphalt datasets [73]. Aurora's prefix-tuning for
large-scale multimodal foundations achieves 1.8% gains on
video QA benchmarks with 0.05% tunable parameters,
adaptable to UAV trajectory prediction [74].

For remote sensing, adaptive PEFT selects high-
quality multimodal subsets via uncertainty sampling,
accelerating convergence by 30% in land-cover mapping
[75]. Surveys highlight prompt-based PEFT's efficacy in
VLMs, with BitFit and sparse updates mitigating forgetting
in continual aerial adaptation [76]. These methods
democratize MLM deployment, transitioning to distributed
paradigms.
4.3 Asynchronous Distributed Computing for Multi-UAV
Knowledge Alignment

In multi-UAV swarms, asynchronous distributed
computing ensures robust knowledge alignment across
modalities, countering temporal misalignments and
topological drifts via federated updates [77]. Tokenizers
map inputs to shared embeddings, followed by CLIP-ViT
encoders for contrastive alignment, with cross-attention
fusing features in a unified space [78].

Frameworks like LLVM-Drone integrate LLMs for
vision missions, employing homomorphic encryption in
async FL to synchronize gradients without data exposure,
enhancing swarm perception by 20% in collaborative
localization [79]. IRADA's reward aggregation distributes
task allocation, aligning multimodal states via submodular
proxies for persistent monitoring [80]. For embodied VL,
OODA-guided interactions facilitate human-swarm
alignment, with DRL-infused async updates optimizing
multimodal rewards in low-altitude pursuits [81].

On-device pipelining accelerates inference,
compressing gradients for 2x throughput in edge MLMs, as
in temporal attack mitigations preserving fusion integrity
[82]. These alignments culminate in resilient, scalable
sensing, as benchmarked on UAVScenes with 15% cross-
UAV transfer gains [83].
V. Benchmarks, Performance Metrics, Deployment
Challenges, and Future Directions

This section synthesizes empirical evaluations across
the surveyed paradigms, benchmarking intelligent terminal
perception, multi-UAV collaboration, and multimodal large
models (MLMs) for low-altitude UAV sensing. We
delineate key datasets and metrics, highlighting trade-offs
in accuracy, latency, and resource utilization. Subsequently,
deployment challenges in edge-constrained environments
are dissected, followed by prospective trajectories toward
fully autonomous aerial ecosystems, informed by emerging
trends in adaptive AI and swarm orchestration.
5.1 Benchmarks and Performance Metrics

Benchmarking UAV perception requires multimodal
datasets that capture low-altitude complexities—such as
dynamic occlusions, spectral variances, and sparse
annotations—while metrics must balance fidelity (e.g.,
mAP, IoU) with operational viability (e.g., inference

latency, energy draw) [84]. Recent datasets like
UAVScenes provide a large-scale multimodal corpus for
2D/3D tasks, including semantic segmentation and novel
view synthesis, with baselines showing Transformer-based
models achieving 45% mIoU on urban aerial scenes under
varying altitudes [85]. Similarly, UEMM-Air evaluates
multi-modal environmental perception, reporting 28% gains
in cross-task generalization for federated setups, using
metrics like task-averaged accuracy and transfer efficiency
[86].

For federated learning in UAV swarms, performance
hinges on communication efficiency and convergence
speed. The AERPAW platform benchmarks anomaly
detection, where async FL reduces training latency by 35%
compared to centralized baselines, measured via rounds-to-
convergence and per-round energy (e.g., 12 mJ per UAV
iteration) [87]. In multi-task scenarios, task attention
mechanisms in UAV-enabled FL yield 22% uplifts in
global loss minimization, with key metrics including client
drift variance and spectral efficiency under non-IID
distributions [88]. Edge-specific evaluations, such as those
on battery-constrained IoT-UAV networks, quantify trade-
offs: FedProx variants cut energy by 40% while
maintaining 92% accuracy in intrusion detection,
benchmarked on simulated swarms with 50-node topologies
[89].

Multimodal MLMs are assessed via 3D perception
fidelity and fusion robustness. ATR-UMMIR, a benchmark
for image registration under complex conditions, reports
alignment errors below 2 pixels for RGB-TIR pairs, with
Transformer decoders outperforming CNNs by 15% in
perceptual hashing metrics [90]. Kust4K extends this to
urban traffic segmentation, where BEV fusion achieves
62% mIoU, emphasizing cross-modal IoU and depth
estimation RMSE (under 0.5m) for low-altitude viability
[91]. Holistic metrics, like those in RGBTDronePerson,
integrate detection latency (<100ms) and energy-
normalized F1-scores, revealing 18% efficiency gains from
PEFT-tuned VLMs [92].

Benchmark Dataset Modalities Key Tasks
Primary Metrics Baseline Performance

UAVScenes [85] RGB, Depth, LiDAR
Segmentation, Localization mIoU, RMSE,

Latency 45% mIoU (Transformer)
UEMM-Air [86] RGB-TIR, Spectral

Environmental Perception Task-Avg. Acc.,
Transfer Eff. 28% Gain (Federated)

ATR-UMMIR [90] RGB-TIR Registration,
Fusion Alignment Error, Hashing <2px Error (Decoder)

Kust4K [91]RGB-TIR Segmentation mIoU,
Depth RMSE 62% mIoU (BEV Fusion)

AERPAW [87] Network Logs Anomaly
Detection Rounds-to-Conv., Energy/mJ 35%
Latency Red. (Async FL)

These benchmarks underscore synergies: self-evolving
paradigms boost adaptability (e.g., 20% forgetting
reduction), while federated MLMs enhance scalability,
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though at 10-15% accuracy costs in heterogeneous swarms
[93].
5.2 Deployment Challenges

Deploying these technologies on UAVs confronts
multifaceted hurdles, from computational austerity to real-
time exigencies in contested low-altitude regimes [94].
Resource constraints—limited payloads (e.g., <500g
compute modules) and power budgets (10-50W)—amplify
MLM inference overheads; full Transformer stacks exceed
100 GFLOPs, necessitating 4x quantization for <200ms
latency, yet degrading precision by 8% in fusion tasks [95].
Edge federation exacerbates this: async updates in swarms
induce model drift (up to 12% variance under link failures),
demanding robust aggregation like variance-reduced
gradients [96].

Privacy and security pose acute risks; federated
gradients leak via inversion attacks, with UAV telemetry
amplifying exposure in multi-agent settings [97].
Multimodal alignment falters under sensor asynchrony (e.g.,
50ms LiDAR-camera offsets), yielding 15% fusion errors
in dynamic scenes, while environmental factors like wind
shear (>10m/s) inflate localization RMSE beyond 1m [98].
Scalability bottlenecks emerge in swarms: topological flux
in 20+ UAVs spikes communication by 30%, mitigated
imperfectly by NOMA relays [99]. Human-UAV interfaces
lag, with VLMs struggling on ambiguous prompts (e.g.,
25% misinterpretation in tactical commands), underscoring
needs for embodied fine-tuning [100].

5.3 Prospective Trajectories Toward Fully
Autonomous Aerial Ecosystems

The horizon for autonomous UAV ecosystems
envisions symbiotic swarms leveraging multimodal AI for
emergent intelligence, evolving from reactive sensing to
proactive orchestration [101]. Near-term advances hinge on
hybrid neuro-symbolic MLMs, fusing Transformers with
knowledge graphs for interpretable decision-making,
potentially slashing hallucination rates by 40% in swarm
coordination [102]. Edge-native hardware—neuromorphic
chips emulating spiking networks—promises 10x energy
savings, enabling persistent 24/7 operations in GPS-denied
zones [103].

Federated paradigms will mature via blockchain-
secured FL, ensuring Byzantine-resilient updates for 100+
UAV swarms, with quantum-inspired aggregators targeting
sub-10ms global sync [104]. Multimodal frontiers include
embodied agents: LLMs-as-pilots for zero-shot tasking,
integrating tactile/haptic sensors for dexterous low-altitude
manipulation [105]. Ethical trajectories emphasize human-
centered designs, with explainable AI mitigating biases in
diverse operational theaters [106].

Long-term, bio-inspired collectives—drawing from
flocking algorithms and evolutionary robotics—will yield
self-healing swarms, adapting to 50% node losses via
genetic programming [107]. Integration with 6G/LEO
constellations foreshadows global-scale ecosystems,
revolutionizing disaster response and precision agriculture

with 99.9% uptime [108]. These trajectories, grounded in
interdisciplinary fusion, herald a resilient aerial commons,
where UAVs transcend tools to become cognitive sentinels.

6. Conclusion
This survey has traversed the evolving landscape of

multimodal large models (MLMs) driving precise
perception in complex low-altitude UAV environments,
synthesizing advancements across intelligent terminal
adaptation, multi-UAV collaborative enhancement, and
Transformer-centric multimodal fusion. By addressing the
tripartite challenges of adaptability, collaboration, and
perceptual fidelity, we illuminated pathways from
traditional centralized paradigms to edge-native, self-
evolving ecosystems that empower UAVs as autonomous
sentinels in domains spanning disaster response, urban
surveillance, and precision agriculture [109]. Key insights
reveal that self-supervised online learning curtails
catastrophic forgetting by 20-30% in streaming aerial data
[7], federated asynchronous optimizations amplify swarm
coverage with 35% latency reductions [87], and PEFT-
augmented MLMs achieve 15-25% gains in 3D fusion
fidelity under resource constraints [72].

These integrations not only mitigate the inefficiencies
of legacy workflows—high transmission delays and
annotation scarcity—but also foster resilient, privacy-
preserving operations, aligning with global imperatives like
DARPA's Blackjack and EU's Future Sky visions [4,5]. Yet,
as benchmarks underscore, persistent gaps in unsupervised
alignment and topological robustness demand
interdisciplinary innovations, from neuromorphic hardware
to neuro-symbolic hybrids [103,102].

Looking ahead, the convergence of MLMs with 6G-
enabled swarms heralds fully autonomous aerial
ecosystems: self-healing collectives that proactively
orchestrate tasks, adapt to adversarial fluxes, and integrate
human oversight via interpretable VL interfaces [105,106].
By bridging these frontiers, this work equips researchers
and practitioners to propel edge intelligence toward a safer,
more interconnected skies, where UAVs transcend mere
platforms to become symbiotic extensions of human
ingenuity.
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