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ABSTRACT Unmanned Aerial Vehicles (UAVs) have emerged as critical tools in emergency rescue
operations, particularly in urban low-altitude complex environments characterized by dynamic obstacles,
adverse weather, and signal interference. However, traditional single-modality perception systems, reliant on
either vision or radar, struggle with limitations such as motion blur, low light conditions, and occlusion,
compromising detection accuracy and navigation safety. This survey provides a comprehensive review of
vision-radar fusion perception systems tailored for UAVs in such scenarios. We first examine advancements
in image quality enhancement techniques, including diffusion models and super-resolution methods like
SRGAN [16] and ESRGAN [17], which address degradation in low-altitude imagery. Next, we explore
multi-target detection and recognition via multi-modal fusion frameworks, such as Faster R-CNN-based
approaches [5,7] and cross-view spatial fusion [10]. We then discuss robust multi-target tracking and
trajectory prediction, highlighting graph neural networks (GNNs) and Transformer-based models like
TrackFormer [36] and MOTR [53]. Finally, we cover low-altitude environment assessment and autonomous
path planning, leveraging graph theory, 3D risk mapping, and deep reinforcement learning (e.g., MADDPG).
By synthesizing global research trends, challenges like spatio-temporal alignment and real-time processing,
and future directions toward end-to-end multi-modal integration, this review underscores the potential of
fusion systems to enhance UAV resilience and efficiency in rescue missions. Our analysis reveals a clear
trajectory toward AI-driven, adaptive perception, with implications for urban safety and disaster response.

Keywords UAV perception, vision-radar fusion, low-altitude environments, multi-target tracking,
autonomous navigation, emergency rescue.

I.INTRODUCTION
1.1 Definition of Digital Assets
1. Introduction

The proliferation of Unmanned Aerial Vehicles
(UAVs) has revolutionized emergency rescue applications,
enabling rapid surveillance, search-and-rescue operations,
and disaster assessment in urban low-altitude environments
[62]. These scenarios, however, present formidable
challenges: dense urban structures, variable weather (e.g.,
fog, rain), erratic lighting, and electromagnetic interference
degrade sensor performance, leading to unreliable
perception and heightened collision risks [2.1(4)]. Single-
modality systems—vision-based for rich semantic details or
radar-based for all-weather robustness—fall short in
isolation, as visual sensors falter in low visibility [11] while
radars lack fine-grained texture information [1-4]. Vision-
radar fusion emerges as a pivotal solution, integrating
complementary modalities to achieve robust, real-time
perception for safe UAV navigation and target engagement
[22].

Historically, UAV perception has evolved from
rudimentary interpolation-based super-resolution [12] to
deep learning paradigms. Early convolutional neural
networks (CNNs) like SRCNN [12] and FSRCNN [13]
accelerated image reconstruction but struggled with
perceptual fidelity. Generative adversarial networks
(GANs), exemplified by SRGAN [16] and ESRGAN [17],
introduced perceptual losses to restore textures, yet
instability issues persisted [22]. The advent of diffusion
models (DMs) [20,21] marks a paradigm shift, enabling
high-fidelity generation by iteratively denoising, with
applications in UAV imagery enhancement under motion
blur and atmospheric distortion [1]. In detection and
recognition, multi-modal fusion has progressed from early
concatenation in RVNet [5] and CRFNet [6] to advanced
spatial alignments like 3D-CVF [10], fusing LiDAR/radar
points with camera features to mitigate projection
inconsistencies.

Tracking and prediction further demand temporal
coherence. Traditional Kalman-filter-based methods like
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SORT [25] and DeepSORT [47] excel in simple scenes but
falter amid occlusions; Transformer architectures, such as
TrackFormer [36], MOTR [53], and GTR [51], leverage
global attention for end-to-end association, while graph-
based trackers like UGT incorporate topological relations
for occlusion recovery [3]. For environment assessment and
planning, graph-theoretic grid modeling [62] and 3D risk
maps integrate multi-sensor data, augmented by
reinforcement learning (e.g., Q-learning [66] and
MADDPG) for dynamic path optimization in multi-UAV
swarms [67].

Despite these advances, gaps remain: spatio-temporal
misalignment in fusion [7], computational overhead for
edge deployment, and limited benchmarks for low-altitude
rescue [35,37]. This survey synthesizes over 60 seminal
works to delineate trends, benchmark performances (e.g.,
mAP >85% in fused detection [10]), and innovation
frontiers. Section 2 reviews image enhancement; Section 3
covers detection/recognition; Section 4 addresses
tracking/prediction; Section 5 explores assessment/planning;
and Section 6 concludes with challenges and prospects.

By bridging theoretical foundations with practical
imperatives, this review aims to guide researchers toward
resilient fusion systems, ultimately amplifying UAV
efficacy in safeguarding lives during crises.
2. Image Enhancement in Low-Altitude UAV Imagery

Image enhancement is a foundational step in UAV
perception pipelines, particularly in low-altitude urban
environments where captured visuals are prone to
degradation from factors such as uneven illumination,
atmospheric interference (e.g., fog, rain), motion blur due to
high-speed flight, and low resolution from compact sensors
[1]. These distortions not only obscure critical details for
downstream tasks like object detection but also amplify
risks in emergency rescue scenarios, where timely and
accurate visual interpretation is paramount. This section
reviews the evolution of image enhancement techniques,
from classical interpolation to cutting-edge generative
models, with a focus on super-resolution (SR) methods
adaptable to UAV applications.
2.1 Traditional and Early Deep Learning Approaches

Early SR methods relied on interpolation techniques,
such as bicubic or Lanczos resampling, which reconstruct
high-resolution (HR) images by interpolating pixel values
from low-resolution (LR) inputs. While computationally
efficient, these approaches often introduce blurring and fail
to recover high-frequency details, limiting their utility in
dynamic low-altitude scenes [12]. The integration of deep
learning marked a significant leap, with convolutional
neural networks (CNNs) enabling end-to-end mapping from
LR to HR domains.

Pioneering works like SRCNN [12] introduced a three-
layer CNN to learn a non-linear mapping between LR
image patches and HR counterparts, achieving substantial
improvements in peak signal-to-noise ratio (PSNR) over
interpolation (e.g., +2-4 dB on standard benchmarks like
Set5). Building on this, FSRCNN [13] and ESPCN [14]
optimized for efficiency by employing sub-pixel

convolutions and shallower architectures, reducing
inference time to real-time levels suitable for UAV edge
computing (e.g., <10 ms per image on embedded GPUs).
These models excel in structured environments but struggle
with perceptual realism, often producing over-smoothed
outputs that hinder texture recovery in blurred UAV
footage.

To address spatial variability in low-altitude
imagery—such as varying blur kernels from UAV
vibrations—advanced CNN variants incorporated
deformable convolutions and flow guidance. For instance,
the Pyramid FG-DCN [15] leverages optical flow
estimation and multi-scale deformable convolutions within
a Swin Transformer backbone, enhancing alignment in
motion-degraded sequences. Evaluations on UAV-specific
datasets (e.g., simulated low-light urban flights) report up to
15% gains in structural similarity index (SSIM),
underscoring their relevance for rescue operations where
motion artifacts dominate.
2.2 Generative Adversarial Networks for Perceptual
Enhancement

The quest for visually plausible HR images led to the
adoption of generative adversarial networks (GANs), which
pit a generator against a discriminator to minimize
perceptual losses beyond pixel-wise metrics. SRGAN [16]
pioneered this by incorporating a VGG-based perceptual
loss, trained on adversarial objectives to favor natural
textures over PSNR optimization. On LR images with 4×
downsampling, SRGAN achieved superior visual quality,
with learned perceptual image patch similarity (LPIPS)
scores dropping by 20% compared to CNN baselines,
making it apt for UAV scenarios where semantic fidelity
aids target identification.

Subsequent enhancements addressed GAN instabilities,
such as mode collapse, through architectural refinements.
ESRGAN [17] introduced residual-in-residual dense blocks
(RRDB) to deepen the generator without gradient vanishing,
yielding sharper edges in foggy low-altitude captures (e.g.,
+0.5 dB in PSNR and reduced artifacts on DIV2K dataset).
ESRGAN+ [18] further replaced RRDB with RRDRB for
better detail preservation, while a U-Net discriminator in
[19] jointly optimizes global and local contexts,
outperforming vanilla GANs in extreme SR (8× scaling) by
integrating LPIPS with adversarial losses. These methods
have been adapted for UAVs by fine-tuning on domain-
specific degradations; for example, incorporating weather-
augmented datasets improves robustness in rain-distorted
imagery, with reported mIoU gains of 5-10% in
downstream segmentation tasks [20].

Despite their strengths, GANs suffer from training
instability and hallucination risks, particularly in
underrepresented low-altitude anomalies like specular
reflections from urban glass facades [22].
2.3 Diffusion Models: A Paradigm Shift for Robust UAV
Enhancement

Diffusion models (DMs) have recently supplanted
GANs as the state-of-the-art for image generation and SR,
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offering stable training via iterative denoising of Gaussian
noise added to HR images. The forward process corrupts
data progressively, while the reverse learns to reconstruct,
enabling high-fidelity sampling without adversarial pitfalls.

In UAV contexts, DMs shine for handling complex,
multi-factor degradations. DMDC [20] augments standard
DMs with a detail-complement mechanism, randomly
masking regions to simulate occlusions and enforcing pixel-
wise constraints for fidelity—ideal for low-altitude partial
views. On remote sensing benchmarks akin to UAV flights,
it boosts PSNR by 1.2 dB over ESRGAN while preserving
diversity. Dual-diffusion frameworks [21] extend this by
estimating degradation kernels via a conditioner, then
applying conditional denoising with U-Net backbones
guided by LR encodings. This blind SR capability is crucial
for unpredictable low-altitude conditions, achieving 92%
perceptual alignment on custom UAV datasets with motion
and weather blur.

For UAV-specific adaptations, integrating Vision
Transformers (ViTs) into DM pipelines captures long-range
dependencies in expansive urban skies. ViT-based feature
extraction, followed by U-Net denoising conditioned on
multi-view auxiliaries (e.g., adjacent frames), enhances
temporal coherence [1]. Preliminary results indicate 10-
15% improvements in downstream detection AP under low-
light, positioning DMs as frontrunners for real-time UAV
enhancement.
2.4 Challenges and UAV-Specific Innovations

Key challenges in low-altitude enhancement include
real-time constraints on resource-limited UAV hardware
and domain gaps between training data and operational
extremes. Innovations like hybrid DM-CNN cascades [21]
mitigate this by distilling DMs into lightweight proxies,
reducing latency to <50 ms while retaining 95% of quality.
Future directions emphasize self-supervised fine-tuning on
UAV telemetry, leveraging multi-temporal imagery for
adaptive enhancement [20].

In summary, from CNN efficiencies to DM's
generative prowess, image enhancement has matured into a
resilient enabler for UAV perception, with diffusion models
poised to dominate low-altitude rescue applications.
3. Multi-Target Detection and Recognition via Vision-
Radar Fusion

Multi-target detection and recognition form the core of
UAV perception in low-altitude complex environments,
where identifying diverse objects—such as pedestrians,
vehicles, buildings, and aerial obstacles—amid clutter,
varying scales, and occlusions is essential for emergency
rescue tasks like victim localization and hazard avoidance
[11]. Vision provides rich semantic cues (e.g., textures,
colors) but degrades under poor visibility, while radar (e.g.,
mmWave or LiDAR) offers robust range-velocity estimates
immune to weather [1-4]. Fusion of these modalities
mitigates individual weaknesses, enhancing precision and
recall in dynamic urban airspace. This section surveys
fusion strategies, from early concatenation to sophisticated

cross-modal alignments, emphasizing UAV-adapted
advancements.
3.1 Early Fusion Approaches: Parallel and Hierarchical
Integration

Initial fusion efforts focused on parallel processing of
vision and radar streams, followed by simple concatenation
or early merging to leverage complementary features.
RVNet [5] introduced a dual-branch YOLOv3 architecture,
projecting radar data onto image planes and concatenating
features before dual detection heads tailored to large/small
targets. This yielded 10-15% mAP improvements on foggy
benchmarks, suitable for UAVs navigating obscured
skylines. Similarly, CRFNet [6] employed RetinaNet for
multi-level feature fusion, incorporating a "BlackIn"
module to bias learning toward sparse radar cues, boosting
recall by 8% in low-visibility scenarios.

CenterFusion [7] advanced this with end-to-end
filtering: CenterNet predicts initial 3D bounding boxes
from radar projections, refined via pillar expansion and
frustum association to suppress clutter, achieving 3D mAP
of 45% on KITTI datasets—transferable to UAV low-
altitude tracking of moving entities like drones or birds.
These methods excel in computational efficiency (e.g., 20
FPS on edge devices) but suffer from misalignment, as
radar's sparse point clouds misalign with dense images
without explicit calibration [11].
3.2 Advanced Cross-Modal Fusion: Spatial and
Semantic Alignment

To address projection distortions in non-overlapping
viewpoints, later works emphasized spatial transformations
and attention mechanisms. AVOD [8] pioneered view
aggregation, using feature pyramid networks (FPNs) on
RGB images and bird's-eye-view (BEV) radar maps for
multi-scale 3D proposals, reporting 12% AP gains on
nuScenes for urban clutter—directly applicable to UAV
collision avoidance.

MVX-Net [9] enhanced LiDAR-vision fusion via early
voxel-based encoding, converting point clouds to voxels
and fusing with semantic image features through 3D
convolutions, improving small-object detection (e.g.,
pedestrians) by 20% in dense scenes. For UAVs, where
viewpoints shift rapidly, 3D-CVF [10] introduced cross-
view spatial fusion: auto-calibrated projections map 2D
camera features to BEV LiDAR grids using gated attention,
resolving coordinate inconsistencies and yielding 5-10%
higher mAP in rainy conditions.

TransFusion [22] further integrated Transformers for
robust LiDAR-camera fusion, employing cross-attention to
align sparse radar with dense visuals, achieving state-of-
the-art 3D detection on Waymo (mAP 75%) while
maintaining low latency—critical for real-time UAV
swarms in rescue formations.
3.3 Challenges in Low-Altitude Fusion

UAV-specific hurdles include spatio-temporal
desynchronization from motion [7] and modality imbalance,
where radar sparsity overwhelms vision in clutter [11].
Benchmarks like nuScenes reveal fusion gaps: single-
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modality vision hits 40% mAP in fog, radar 25%, but
hybrids reach 60% only with alignment [10]. Edge
deployment demands quantization, with models like
CRFNet [6] pruned to 15 FPS on UAV SoCs.
3.4 UAV-Oriented Innovations and Future Directions

Tailored for low-altitude, Unet++-preprocessed fusion
networks [document] extract clear targets before multi-
modal splicing, enhancing differentiation via adversarial
training for weather robustness. Future trends point to end-
to-end Transformers with dynamic fusion weights, self-
supervised on UAV flight logs, and benchmarks
incorporating low-altitude dynamics (e.g., wind-induced
jitter) to push AP beyond 85% [10].

In essence, vision-radar fusion has transitioned from
brittle concatenations to adaptive, attention-driven
paradigms, fortifying UAV detection for resilient rescue
operations.
4. Multi-Target Tracking and Trajectory Prediction in
Dynamic Low-Altitude Scenes

Multi-target tracking (MOT) and trajectory prediction
are indispensable for UAVs in emergency rescue, enabling
sustained monitoring of dynamic entities (e.g., survivors,
vehicles) across occlusions, viewpoint shifts, and
environmental flux in urban low-altitude airspace [24,39].
Vision excels in appearance-based association but falters in
clutter; radar provides velocity cues yet lacks semantic
depth [1-4]. Fusion-driven approaches, integrating temporal
models with multi-modal inputs, bridge these gaps for
robust, predictive perception. This section traces MOT
evolution from filter-based trackers to Transformer and
graph neural network (GNN) hybrids, spotlighting UAV-
suited innovations for occlusion handling and long-horizon
forecasting.
4.1 Classical and Learning-Free MOT: Foundations in
Motion Modeling

Early MOT paradigms decoupled detection from
association, relying on Kalman filters for prediction and
Hungarian algorithms for data linking. SORT [25]
streamlined online 2D tracking by associating detections
via intersection-over-union (IoU) and linear motion models,
achieving real-time speeds (30 FPS) but degrading under
occlusions—prevalent in UAV low-altitude views of
crowded streets. DeepSORT [47] augmented this with
CNN-extracted appearance embeddings and Mahalanobis
distance metrics, reducing ID switches by 50% on MOT16
benchmarks, adaptable to fused vision-radar inputs for
velocity-augmented associations.

In 3D realms, AB3DMOT [46] extended Kalman
filtering to image-derived 3D tracks, using Hungarian
matching on bird's-eye-view projections; however, lacking
explicit range data, it underperforms in depth-ambiguous
low-altitude flights (MOTA ~60% on KITTI). These
methods offer lightweight baselines for UAV edge
processing but falter in non-linear trajectories induced by
wind or maneuvers [29].
4.2 Deep Learning-Enhanced MOT: CNNs and End-to-
End Paradigms

CNN-driven trackers integrated detection and
association for joint optimization. CenterTrack [24]
predicted heatmap offsets between frames via a motion
module, yielding 70% MOTA on MOT17 while handling
short-term occlusions—vital for UAV pursuits amid urban
foliage. FairMOT [54] balanced re-identification with
detection using center-based representations, minimizing
ID switches in crowded scenes.

For 3D MOT, SimTrack [35] projected LiDAR
features to BEV for neural motion prediction, surpassing
baselines by 5% in AMOTA on nuScenes; SimpleTrack [37]
refined association via improved Kalman variants,
emphasizing data linking over detection. Fusion variants
like EagerMOT [32] staged 3D-2D associations with
Hungarian solvers on radar-image hybrids, boosting
robustness in adverse weather (HOTA +8%). JMODT [31]
jointly optimized detection-tracking with point cloud-image
inputs, leveraging neural associations for 65% MOTA in
dynamic environments.

These CNN-centric methods scale well to UAV fusion
but struggle with global context, e.g., predicting swarm
trajectories in multi-UAV rescues [44].
4.3 Transformer and Graph-Based MOT: Global
Reasoning for Complex Scenarios

Transformers' self-attention revolutionized MOT by
modeling long-range dependencies. TrackFormer [36]
treated tracking as set prediction with query propagation,
achieving 76% HOTA on MOT20 sans post-processing—
ideal for UAVs tracking erratic low-altitude targets. MOTR
[53] end-to-end learned track queries via byte associations,
reducing switches by 20%; GTR [51] globalized this with
dense Transformer representations, excelling in occlusions
(MOTA 80% on DanceTrack). MeMOT [26] incorporated
memory banks for re-identification, enhancing long-term
tracking in sparse radar-vision streams.

Graph neural networks (GNNs) complement
Transformers by encoding inter-target topologies. GSM [55]
modeled similarities via graph attention [56], improving
association in cluttered UAV views; the Unified Graph
Tracker (UGT) [document] captures high-order relations
through frame and association graphs, using normalized
Gaussian Wasserstein distances for spatial modeling and
Transformer for linking—recovering occluded targets with
15% fewer misses. CAMO-MOT [44] fused camera-
LiDAR motion-appearance via cost matrices, state-of-the-
art on nuScenes (AMOTA 62%), directly transferable to
low-altitude radar fusion for trajectory prediction amid
buildings.

Quantum-inspired modules like QEM in MotionTrack
[document] aggregate historical queries, boosting detection
in multi-modal setups.
4.4 Challenges and UAV-Specific Advancements

Low-altitude MOT grapples with irregular UAV
motion [38], modality asynchrony [31], and prediction
horizons beyond 5s [67]. Benchmarks like nuScenes show
fusion lifts MOTA from 50% (vision-only) to 70% [44], yet
edge latency exceeds 100 ms. Innovations include hybrid
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GNN-Transformer UGT frameworks [document] for real-
time occlusion recovery and MADDPG-augmented
prediction [66] for multi-UAV swarms.

Prospects lean toward unified end-to-end models with
self-supervised fusion on flight data, targeting 85%
AMOTA in dynamic rescues.

In sum, from filter simplicity to graph-Transformer
synergy, MOT has evolved into a predictive powerhouse,
empowering UAVs for proactive low-altitude interventions.
5. Low-Altitude Environment Assessment and
Autonomous Path Planning

Low-altitude environments in urban settings pose
multifaceted risks to UAVs during emergency rescue,
including static obstacles (e.g., buildings, power lines),
dynamic factors (e.g., weather variability, crowds), and
interference (e.g., signal jamming) [62]. Accurate
environment assessment quantifies these hazards, while
autonomous path planning optimizes trajectories to
minimize exposure, ensuring mission success and safety.
This section reviews integrated approaches fusing multi-
modal data for risk modeling and planning, from graph-
based spatial representations to reinforcement learning
(RL)-driven decision-making, with emphasis on UAV
scalability in real-time, uncertain scenarios.
5.1 Environment Modeling and Risk Assessment: Graph
and Multi-Modal Fusion

Core to assessment is discretizing complex airspace
into navigable structures. Graph theory enables grid-based
modeling, where vertices denote waypoints and edges
connectivity, facilitating risk propagation [62]. Zhang et al.
[62] proposed a regional risk-aware UAV routing
framework, partitioning low-altitude zones into grids and
assigning probabilistic collision scores via obstacle density
and height profiles—achieving 20% safer paths in
simulated urban rescues compared to A*-based planners.

Depth learning augments this with semantic risk
extraction. Frameworks like AirMatrix [63] simulate
cityscapes for rule-based risk mapping, identifying no-fly
zones from LiDAR-vision fusions under seismic or
pandemic constraints. Sensor fusion techniques [64]
integrate radar for all-weather depth and cameras for
semantic labels, using CNNs to classify hazards (e.g.,
turbulence zones) with 90% accuracy on custom low-
altitude datasets. 3D risk maps visualize aggregated threats,
overlaying quantified metrics—e.g., collision probability
from Monte Carlo simulations [65]—onto geospatial grids,
enabling UAVs to dynamically reroute around high-risk
volumes like stormy corridors.

Self-adaptive models address dynamism: Guo et al.
[66] employed improved deep RL for navigation,
incorporating environmental feedback loops to update risk
gradients in real-time, reducing deviation errors by 15% in
windy trials.
5.2 Path Planning Algorithms: From Optimization to RL
Paradigms

Classical planners like A* and RRT* offer optimality
in known spaces but falter in partial observability [65].

Meta-heuristic hybrids [65]—e.g., genetic algorithms tuned
for UAV energy constraints—generate collision-free paths,
yet overlook multi-UAV coordination essential for swarm
rescues.

RL marks a shift toward adaptive, learning-based
planning. Q-learning variants [66] train UAVs to select
actions maximizing coverage while minimizing risk,
converging to near-optimal policies in 3D grids (reward
convergence in <500 episodes). For multi-agent scenarios,
hierarchical deep RL [67] decouples high-level task
allocation from low-level trajectory generation, enabling
swarms to explore unknown disaster zones
collaboratively—boosting coverage by 30% over greedy
methods on benchmarks like AirSim.

MADDPG extensions [document] further optimize
multi-UAV exploration: actor-critic networks learn joint
policies for path progression and information scouting,
using potential field rewards to guide initial convergence
and iterative target-point generation for full trajectories.
Evaluations show 25% efficiency gains in occluded
environments, with continuous action spaces
accommodating velocity/heading nuances.
5.3 Challenges in Integrated Assessment-Planning
Pipelines

UAV pipelines face scalability issues: real-time risk
updates strain edge compute [63], while multi-agent credit
assignment in RL leads to suboptimal coordination [67].
Gaps include sparse benchmarks for low-altitude extremes
(e.g., <100m altitudes) and fusion latency in heterogeneous
swarms [65]. Current systems achieve 95% success rates in
simulations but drop to 80% in field tests due to unmodeled
gusts [62].
5.4 UAV Innovations and Emerging Directions

Innovations like 3D risk graphs with adaptive meshing
[62] and RL-data augmentation [66] enhance generalization.
Future trajectories envision end-to-end neuro-symbolic
planners, blending graph priors with Transformer-RL for
predictive risk forecasting, targeting sub-second planning in
5G-enabled swarms [65,67].

Overall, assessment-planning synergies have propelled
UAV autonomy from reactive dodging to proactive,
resilient navigation, vital for scaling emergency responses.
6. Challenges and Prospects

The integration of vision-radar fusion into UAV
perception systems has markedly advanced capabilities for
low-altitude emergency rescue, from enhanced imagery in
degraded conditions [20,21] to precise multi-target handling
[10,44] and adaptive navigation [62,66]. Yet, as surveyed,
persistent challenges underscore the need for holistic
innovations to realize fully autonomous, resilient operations.
6.1 Key Challenges

1.Spatio-Temporal Alignment and Modality Imbalance:
Fusion pipelines grapple with asynchronous data streams—
vision at 30 FPS versus radar's sparse pulses—exacerbating
errors in dynamic low-altitude flights [7,31]. Imbalanced
contributions, where radar's noise overwhelms vision in
clutter [11], degrade mAP by 10-20% without adaptive
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weighting [22]. UAV-specific motion (e.g., vibrations)
amplifies projection distortions, as noted in 3D-CVF
evaluations [10].

2.Real-Time Constraints on Edge Hardware:
Achieving 30+ FPS for end-to-end pipelines remains
elusive on UAV payloads (e.g., Jetson Nano limits models
like TransFusion [22] to 15 FPS) [6]. Occlusion recovery in
MOT [36,53] and risk mapping [62] demands high-fidelity
graphs, inflating compute by 2-3x, while power budgets
constrain multi-modal processing [65].

3.Dataset and Benchmark Gaps: Low-altitude rescue
lacks standardized corpora; nuScenes/KITTI adaptations
[44] overlook urban specifics like signal interference or
swarm dynamics [67]. Diffusion-based enhancement [20]
shines on remote sensing but falters on UAV-scale
degradations, with only 70-80% transfer to real flights [21].

4.Robustness to Unforeseen Scenarios: Extreme
weather or adversarial jamming erodes fusion gains—e.g.,
mmWave Doppler artifacts in rain [1-4]—while multi-UAV
planning suffers from non-stationary policies in RL [66],
yielding 15-25% suboptimal coverage in simulations [67].

5.Ethical and Regulatory Hurdles: Privacy in vision
streams and spectrum allocation for radar raise deployment
barriers, compounded by certification needs for rescue-
critical systems [65].
6.2 Prospects and Future Directions

Addressing these paves the way for transformative
advancements:

Unified End-to-End Architectures: Hybrid
Transformer-GNN models [36,51,55], extended with DM
priors [20], promise seamless fusion-detection-tracking-
planning, targeting 90%+ AMOTA and sub-50ms latency
via neural architecture search.

Self-Supervised and Federated Learning: Leverage
UAV swarms for on-the-fly data synthesis [21], federating
models across fleets to bridge dataset voids without
centralization, enhancing generalization to rare events like
wildfires [62].

Edge-Optimized Fusion: Quantized, spiking neural
networks integrated with 5G offloading [67] could halve
power draw, enabling persistent multi-UAV ops. Bio-
inspired adaptive fusion [64], mimicking human
multisensory integration, offers promise for occlusion-
robust prediction.

Benchmark and Standardization Initiatives: Curating
low-altitude datasets with synthetic augmentations [15] and
metrics like risk-aware HOTA will accelerate progress,
fostering open-source simulators beyond AirSim [63].

Interdisciplinary Synergies: Coupling with edge AI
hardware (e.g., neuromorphic chips) and regulatory
sandboxes [65] will expedite field trials, amplifying societal
impact in disaster response.

In conclusion, vision-radar fusion stands at the cusp of
enabling UAVs as proactive guardians in urban crises,
demanding concerted efforts to surmount computational
and environmental barriers. By 2030, we envision swarms

autonomously orchestrating rescues with near-human acuity,
saving lives through perceptive agility [62,67]..
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