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Abstract—This paper delves into an innovative incremental
cubic regularized symmetric rank-1 (SR1) method (ICuREG-
SR1). By incorporating the cubic regularization technique into
SR1, we successfully address the issue of indefinite resulting
matrix in SR1. Our core strategy is to adopt an incremental
optimization scheme, gradually updating the information of the
objective function, which typically involves a sum of multiple
independent functions, and is very common in large-scale ma-
chine learning tasks. Through numerical experiments on multiple
machine learning problems, we find that compared with other
traditional algorithms, our proposed algorithm exhibits superior
performance in terms of gradient magnitude.

Index Terms—quasi-Newton method, symmetric rank-1, su-
perlinear convergence rate, cubic regularization, incremental
optimization.

I. INTRODUCTION

UNCONSTRAINED or constrained optimization prob-
lems can be used to formulate many real-world engi-

neering challenges, such as machine learning [32], [38], [45],
[46] and wireless communications [18], [19]. The focus of
this study is on quasi-Newton approaches for unconstrained
optimization problems:

min
x∈Rn

f(x), (1)

where f(x) is the objective function and x ∈ Rn is the
optimizing variable with dimension n.

Using a quadratic model of (1), several quasi-Newton tech-
niques are available to tackle the issue (1). To be more precise,
the objective function f(x) is approximated at current iterate
xk for each iteration k by applying the second-order Taylor
series, but using an approximate Hessian matrix instead of the
real Hessian matrix. Here is an example of the quasi-Newton
method in its classical form:

xk+1 = xk − λkB−1k ∇f(xk), (2)

where Bk is the approximated Hessian matrix and λk is the
stepsize chosen by standard line search algorithm.

It is necessary to solve the associated linear system at
each iteration in order to derive a descent direction of the
objective function in terms of the approximated quadratic
model. When using the true Hessian matrix, it is necessary
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to evaluate the second-order derivatives in addition to solving
the linear system and inverting the matrix. This can be
computationally costly, particularly if the objective function
is difficult to evaluate—for example, through a physical situ-
ation—and vice versa. In order to reduce the heavy compu-
tation, many recursive update strategies for the approximated
Hessian matrix have been proposed: These comprise rank-two
variations such as the Davidon-Fletcher-Powell (DFP) scheme
[8], [9] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update scheme [6], [10], as well as symmetric rank-one (SR1)
update [3], [5], [7]. The DFP update has been demonstrated
(under mild conditions) to generate a sequence {xk} that
will converge to a local optimal point x∗ at Q-superlinear
convergence rate when implemented with stepsize selected by
standard line search criterion for the rank-two methods, in
which Bk+1 is obtained by adding a matrix of rank at most
two. Furthermore, the Hessian approximation matrix sequence
{Bk} produced by the DFP update lacks the conventional way
for establishing a method with Q-superlinear convergence rate:
it does not have the property of converging to the genuine
Hessian matrix. Actually, it is sufficient but not required
for {Bk} to converge to ∇2f(x∗). Due to its effectiveness,
the DFP updating formula has been used recently to train
complex-valued neural networks for signal processing and
pattern recognition [11]. Nevertheless, the BFGS formula
quickly eclipsed the DFP technique and is now thought to be
the most widely used quasi-Newton approach. One advantage
of the BFGS approach is that, in strongly convex situations, the
generated sequence {Bk} remains positive definite, ensuring
a direction of descent. [6] has convergence properties that are
comparable to the DFP approach.

For rank-one update, the SR1 scheme requires less compu-
tation at each iteration. The recursion formula is given by:

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

sTk (yk −Bksk)
, (3)

where sk = xk+1 − xk and yk = ∇f(xk+1) −
∇f(xk).According to computational experiments, the SR1
is significantly more efficient in the trust region framework
than any other investigated quasi-Newton methods [7], and it
is highly competitive when compared to the BFGS method
[5]. To the best of our knowledge, though, not many previ-



ous research have examined the SR1 method’s convergence
analysis. Conversely, [7] investigated the convergence of SR1
using the frameworks of line search and trust region. The
method of proof relies on the sequence {sk} being uniformly
independent. The outcome demonstrates that the SR1 method-
generated sequence {Bk} converges to an explicit Hessian ma-
trix. However, in many real-world scenarios, the requirement
of uniform linear independence of {sk} is too stringent to
be met. Therefore, the conclusion that {Bk}converges to the
actual Hessian matrix might not apply in all cases. Without
assuming uniform independence of the sequence {sk}, [5]
investigates the convergence features of SR1 further. The
result demonstrates that the SR1 update with conventional line
search framework exhibits (n+1)-step Q-superlinear and 2n-
step quadratic convergence rate. One of the shortcomings of
the SR1 update, in contrast to the BFGS update, is that it
can produce an indefinite matrix Bk even in highly convex
problems, which could lead to a non-descent direction.

Big data will lead to an increase in the popularity of large-
scale optimization problems with many measurements and
variables. It can be very expensive to compute because the
gradient evaluation is based on the amount of measurements.
Furthermore, it may take a significant amount of memory
to store the loss function gradients. Developing effective
stochastic optimization methods is therefore becoming more
and more important. Finding a straightforward and objec-
tive estimator of the whole gradient is the primary driving
force [33].Many large-scale issues have been solved using
stochastic BFGS methods, which are among the most widely
used stochastic quasi-Newton (SQN) methods [15]–[17], [34].
Stochastic BFGS approach ensures positive definiteness of the
sequence {Bk} in severely convex problems.

A SQN approach for handling large-scale strongly convex
issues is presented in [17]. An effective subsampled Hessian-
vector product is suggested based on the limited memory
BFGS (LBFGS) technique, which skillfully avoids double
evaluating the gradients, since the accuracy of the curvature
estimate might be challenging to regulate under the stochastic
regime. A general framework of SQN approaches for solving
nonconvex optimization problems is presented in [15]. A
stochastic damped BFGS, which is based on [21], has been
offered as a solution to the difficult challenge of maintaining
the positive definiteness of the Hessian approximation in
nonconvex problems. Furthermore, the norm of the Hessian
inverse approximation is not uniformly bounded, which im-
pairs convergence, as it has been demonstrated that the Hessian
approximation matrix may be singular or nearly singular.

A regularized stochastic BFGS (RES) approach is suggested
in [14] to mitigate the issue. In order to guarantee that the norm
of the Hessian approximation is over a given threshold and
hence uniformly bounded, it alters the proximity requirement
of BFGS. In order to reduce the high computing cost at each
iteration for the class of problems where the objective function
is represented in a huge sum of highly convex functions, an in-
cremental quasi-Newton methodology (IQN) [16] is proposed.
Using incremental approaches, a single function is selected

at random and then efficiently implemented using the BFGS
method and iteratively updated in a cyclic manner.As a result,
each iteration’s processing cost is significantly decreased, but
at the cost of a slower rate of convergence. The IQN technique
achieves local convergence at a superlinear rate because the
combined gradients of all functions can lessen the noise of the
gradient approximation.

The majority of research on quasi-Newton approaches to
large-scale problem solving relies on the BFGS approach
and its effective variations. To the best of our knowledge,
nevertheless, not many works have been created specifically
for the SR1 way of tackling large-scale issues. This could be
the cause of the SR1 update formula’s two main shortcomings:
(i) The SR1 recursion formula’s denominator in (3) may
disappear; (ii) Even in strongly convex situations, the ensuing
Hessian approximation matrix may be infinite, which results
in the step’s non-descent direction. One common method to
fix issue (i) is to forego the SR1 update if

|sTk (yk −Bksk)| < ε ‖sk‖ ‖yk −Bksk‖ , (4)

where the value of the constant ε is normally chosen as
10−8. In reality, missing the SR1 update makes sense as
long as the Hessian approximation matrix is positive definite.
This is because the present positive definite Bk still leads
to a sufficient reduction in the objective function. [4] has
presented a cubic regularized SR1 (CuREG-SR1) approach
to mitigate problem (ii). The primary method is to compute
the gradient difference using the objective function’s cubic
approximation. The positive definite Hessian approximation
matrix can be obtained using the SR1 recursion formula by
selecting an appropriate cubic parameter that meets the above
requirement. Moreover, [12], [13] has researched the cubic
regularization technique. The cubic regularized technique per-
forms better than the traditional line search criterion because it
avoids the issue of an indefinite Hessian approximation matrix.
Nonetheless, there has been little research done to date on the
cubic regularized SR1 method’s convergence characteristics.
In addition, creating effective algorithms to tackle large-scale
problems with vast amounts of data has garnered a lot of
interest lately in the big data age. In order to handle large-
scale problems, we primarily design efficient algorithms based
on SR1 in this study. One of our primary contributions is
the proposal of a unique incremental optimization technique
based on the SR1 and CuREG-SR1. Each iteration’s primary
goal is to update the data for a chosen subset of the objective
function’s individual functions, which include a massive sum
of component functions, while leaving the rest of the func-
tions unchanged from the previous iteration. Comparing our
suggested technique to other evaluated traditional algorithms,
numerical studies demonstrate that it performs better in terms
of gradient magnitude.

The remainder of the paper is structured as follows: The
general CuREG-SR1 algorithm, which is based on the line
search framework, is reviewed in Section II. We suggest a
brand-new ICuREG-SR1 method in Section III. In Section
IV, the performance of the suggested ICuREG-SR1 method



is assessed using numerical tests. Section V contains the
conclusion. Additionally, we have provided extra material that
compares our suggested strategy to the cutting-edge techniques
Adam [43] and RMSProp [44].

Mathematical Notation: we use ‖a‖ to denote the Euclidean
norm of vector a and ‖A‖ := max {‖Ax‖‖x‖ } to denote the
matrix norm of a matrix A. A � B indicates the matrix A−B
is positive semidefinite. The identity matrix with appropriate
dimension is signified as I .

II. ALGORITHM DEFINITION

The unconstrained optimization issues listed below are ex-
amined in this paper: x∗ = argminx∈Rd f(x) : Rd → R is the
objective function. The variable x has a dimension of d. The
traditional quasi-Newton techniques utilizing the line search
framework are initially reviewed in this section. Our focus
will be on presenting the cubically regularized SR1 approach
and discussing how the SR1 update is derived. Following is
a quick introduction to the cubic regularization approach. The
SR1 approach can be made into CuREG-SR1 by including
the cubic regularization technique. The requirement for the
Hessian approximation update obtained from CuREG-SR1 to
be positive definite will also be covered.

A. Line Search Framework

In the classical line search method, the following update is
used at each iteration to generate a search direction pk ∈ Rd
that can sufficiently lower the objective function:

xk+1 = xk + λkpk, (5)

where the stepsize λk determines how far along the search
direction to proceed. Choosing the stepsize to solve the
following subproblem is ideal: λ∗k = argminλ∈R ϕ(λ) :=
f(xk + λpk): Seeking the precise one-dimensional minimum,
however, is computationally costly in general since it could
call for numerous evaluations of the objective function f and
the gradient ∇f at each iteration. Various criteria have been
given for inexact line search termination in reality, with the
goal of reducing the target function to a tolerable degree
while minimizing computation work. A popular method is the
inexact line search based on the following Wolfe condition:

f(xk + λpk) < f(xk) + c1λ∇f(xk)T pk, (6)

∇f(xk + λpk)
T pk ≥ c2∇f(xk)T pk, (7)

where c1 ∈ (0, 1) and c2 ∈ (c1, 1) are constants. The
inequality in (6) is also known as Armijo condition. Intu-
itively, inequality (6) means that the updated objective function
f(xk + λpk) lies below the linear function l(λ) := f(xk) +
c1λ∇f(xk)T pk, which has a negative slope c1∇f(xk)T pk
with respect to λ to ensure that the function will decrease
at least at a certain rate (since pk is a decrease direction
and c1 is a positive constant, c1∇f(xk)T pk < 0 holds).
Moreover, since f(xk + λpk) < f(xk), it indicates that
for small λ, the inequality ϕ(λ) < l(λ) holds, i.e., the
Armijo condition is always satisfied at small stepsize, this

may cause insufficient reduction when the resultant stepsize is
small. The Armijo condition is thus insufficient to guarantee
a reasonable progress. Therefore, the curvature condition (7)
is introduced, which is called curvature condition. Note the
left hand side of (7) is the derivative of the function ϕ(·)
at λ, i.e., ϕ′(λ) = ∇f(xk + λpk)

T pk. Similarly for the
right hand side, ϕ′(0) = ∇f(xk)T pk. Consequently, for a
stepsize chosen to ensure significant decrease along the search
direction, it implies that the corresponding slope ϕ′(λ) should
be intuitively less slightly negative than ϕ′(0). It makes sense
since we have the intuition that at a point that results in
sufficient reduction, the related slope is negatively flatter. Thus,
combining the Armijo condition and curvature condition, the
algorithm can make reasonable progress.

B. SR1 Quasi-Newton Methods

For Newton’s method, the search direction pk is obtained by
solving the system: ∇2f(xk)pk = −∇f(xk). However, two
drawbacks make Newton’s method impractical: (i). evaluation
of second-order derivative at each iteration is generally too
expensive; (ii). solving the system takes much time and effort,
and matrix inversion or factorization increase the arithmetic
complexity, which can be computationally huge for large scale
problem. Therefore, we consider the quasi-Newton methods,
which seek for an approximate Hessian matrix Bk. We now
turn our attention to SR1 update (3). It has been shown
that if the second-order derivative of the objective function
is Lipschitz continuous and the sequence { sk

‖sk‖} (recall sk
is defined as sk := xk+1 − xk) is uniformly linearly in-
dependent, the sequence {Bk} generated by SR1 formula
converges to the true Hessian matrix at optimal point, i.e.,
lim
k→∞

∥∥Bk −∇2f(x∗)
∥∥ = 0 [5], [7]. The convergence results

generally involve the following assumptions.
Assumption 1: The objective function f(x) is twice contin-

uously differentiable.
Assumption 2: The first-order derivative ∇f(x) is Lipschitz

continuous with L′ > 0, i.e., for all x, y ∈ Rd, the following
inequality holds:

‖∇f(x)−∇f(y)‖ < L′ ‖x− y‖ . (8)

Assumption 3: The second-order derivative ∇2f(x) is Lip-
schitz continuous with L′′ > 0, i.e., for all x, y ∈ Rd, the
following inequality holds:∥∥∇2f(x)−∇2f(y)

∥∥ < L′′ ‖x− y‖ . (9)

Assumption 4: A sequence {sk} in Rd is defined to be uni-
formly linearly independent, if there exists a positive constant
τ > 0, an integer k0 and m ≥ d such that for each k ≥ k0, one
can choose d distinct indices between k and k +m, namely
k ≤ k1 < · · · < kd ≤ k +m, such that σmin(Sk) ≥ τ , where
σmin(Sk) is the minimum singular value of the matrix

Sk = [
sk1
‖sk1‖

, · · · , skd
‖skd‖

]. (10)



Next, we first follow the development in [22] to briefly
review the derivation of the SR1 formula, which motivates
the CuREG-SR1 formula. Recall yk is defined as:

yk := ∇f(xk+1)−∇f(xk), (11)

By using first-order Taylor expansion, we can further obtain:

yk = ∇2f(xk)sk + o(‖sk‖). (12)

For a quadratic function f(x) = 1
2x

TAx+bTx+c, where A is
positive definite, b, c ∈ Rd, it can be verified straightforwardly
that the higher order term is zero. In this case, we can set
Bk = A and obtain the secant equation yk ≈ Bksk. Though
the secant equation does not hold true for the general nonlinear
functions due to the higher order term, it serves as a useful
condition for updating the Hessian approximation matrix given
sk and yk at each iteration:

yk = Bk+1sk. (13)

For rank one update, the recursion formula has the following
form, and the resulting matrix is symmetric:

Bk+1 = Bk + ρvvT , (14)

Combining the secant equation in (13), it follows that:

yk = Bksk + ρvvT sk (15)

Note from the right hand side in (15) that vT sk is a scalar,
hence the vector v has the same direction with (yk−Bksk) for
some scalar ϑ. Therefore, we can simply set v = ϑ(yk−Bksk).
It subsequently leads to the following equation:

yk −Bksk = ρϑ2[sTk (yk −Bksk)](yk −Bksk), (16)

where sTk (yk − Bksk) 6= 0. Comparing the LHS and RHS,
there only exists two possible scenarios: (i). sTk (yk−Bksk) <
0, then ρ = −1 and ϑ2 = [−sTk (yk − Bksk)]

−1; (ii).
sTk (yk−Bksk) > 0, then ρ = 1 and ϑ2 = [sTk (yk−Bksk)]−1.
Substituting the results, we obtain the SR1 formula as follows:

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
. (17)

Subsequently, the search direction pk can be calculated by
solving the system Bkpk = −∇f(xk). Moreover, if the in-
verse Hessian approximation matrix denoted by Hk is positive
definite, it can also be updated by employing the Sherman-
Morrison formula

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)T yk
. (18)

Therefore, instead of solving the system Bkpk = −∇f(xk)
by matrix inverse operation, we can simply obtain the search
direction pk = −Hk∇f(xk) through efficient matrix-vector
product, making the algorithm computationally very attractive.
As mentioned above, when the sequence {xk} converges to the
optimal point with Assumption 3, the Hessian approximation
sequence generated by (17) will converge to the true Hessian
matrix. However, the denominator tends to zero if {xk}

converges to x∗, which implies that all the future updates will
be dominated by the update matrix and violate the uniform
linearly independent assumption [4]. Hence, to alleviate both
the theoretical and practical problems, the Hessian approxi-
mation matrix skips the update whenever the denominator is
too small:

|(yk −Bksk)T sk| < ε ‖yk −Bksk‖ ‖sk‖ , (19)

i.e., at each iteration, set Bk+1 = Bk whenever (19) is satisfied
while otherwise, Bk+1 is calculated via (17). The skipping
scenario has been shown to be effective since we can still get
the descent direction if Bk is positive definite.

C. Cubic Regularization Technique

It should be noted that even if Bk is positive definite, Bk+1

can still be indefinite since the denominator in (17) can be
negative. In [4], the cubic regularized technique has been
proposed to address this issue. We shall first review the cubic
regularization technique [12], [13].

Recall that the search direction in quasi-Newton method for
problem (1) is obtained by solving pk = argminp∈Rd f(xk)+
∇f(xk)T p + 1

2p
TBkp. Similarly in cubic model for the

objective function f(x) with Lipschitz continuous ∇2f(x),
the search direction p is calculated via minimizing the cubic
model mc

k(p):

mc
k(p) := f(xk) +∇f(xk)T p+

1

2
pTBkp+

Mk

6
‖p‖3 . (20)

In general, Mk is chosen to satisfy Mk ≤ L′′. It should
be noted that minimizing the cubic model is a non-convex
problem and it can have local minima [13]. Here, the search
direction pk ∈ Argminp∈Rd mc

k(p) means that pk is a global
minimizer of the cubic model mc

k(p). It has been shown in
[12] that p∗k is a global minimizer of the problem if and only
if ∇mc

k(p
∗
k) = 0 and Bk + 1

2Mk ‖p∗k‖ � 0. The necessary
and sufficient condition has provided us a way to compute
a global minimizer of the cubic model. However, from a
computational point of view, doing so can be prohibitively
sophisticated. In fact, an approximate solution to the global
minimizer can make the algorithm progress well with less
computational complexity. Specifically, for the framework of
adaptive regularization using cubics (ARC) proposed in [12],
the search direction pk is only required to ensure the decrease
in the cubic model at least as good as that produced by the
corresponding Cauchy point. Because in this way and with the
condition that ∇f(x) is uniformly continuous on the sequence
{xk}, the ARC algorithm has been shown to converge to the
first-order critical point, i.e., lim

k→∞
‖∇f(xk)‖ = 0. Hence,

the more efficient Krylov method can be applied to well
approximate the global solution.

III. INCREMENTAL CUREG-SR1

Massive data may cause standard methods to become com-
putationally expensive in the big data era, as was previously
indicated. Consequently, it is quite inefficient to apply the
methods directly to issues with huge sample sizes. We present



a new and effective approach to solving large-scale problems
in this part, which is based on CuREG-SR1 and SR1. In
particular, the goal of our suggested approach is to tackle a
class of issues that have a sum of functions format. These
kind of challenges are common in many domains, including
machine learning problems [26], [27], [29], [30], [32] and
source localization in sensor networks [25].

Now let us consider the problem mentioned above, which
has the form:

x∗ = argminx∈Rd f(x) :=
1

N

N∑
i=1

fi(x), (21)

where N is the sample size and fi is an array of N distinct
functions. It goes without saying that when using the classic
quasi-Newton approach carelessly, we must compute the big
sample summation and assess the gradient N times, both of
which are computationally demanding. A stochastic technique
that samples a tiny batch of big samples to estimate the
gradient—which is utilized in place of the exact gradient—has
been widely adopted to reduce such complexity [20], [35]–
[37]. This concept has been applied to the stochastic quasi-
Newton approach based on BFGS and has significantly de-
creased the computing cost [15], [17]. In this part, we include
the incremental technique into an efficient algorithm based on
SR1 and CuREG-SR1.

Specifically, we approximate each individual function fi by
second-order Taylor expansion around its current iterate zki .
Subsequently, we obtain an approximation to the function f :

f(x) ≈ 1

N

N∑
i=1

{fi(zki ) +∇f(zki )T (x− zki )

+
1

2
(x− zki )TBki (x− zki )},

(22)

where the matrix Bki is the local Hessian approximation to
∇2fi(z

k
i ). Furthermore, we refer to {zki ,∇f(zki ), Bki } as the

information corresponds to the individual function fi. Using
the same strategy with quasi-Newton methods to obtain the
step direction for next iteration, we minimize the RHS in (22).
It subsequently yields:

xk+1 = (B̃k)
−1

(z̃k − g̃k) (23)

where B̃k :=
∑N
i=1B

k
i , z̃k =

∑N
i=1B

k
i z
k
i and g̃k :=∑N

i=1∇f(zki ). In this paper, we consider update the Hessian
approximation matrix by using SR1 and CuREG-SR1.

(23) shows that it requires computationally intensive matrix
inversion and summation arising from big samples. In order
to streamline calculation, we simply update the data related
to one selected individual function per iteration—keeping the
data pertaining to the remaining individual functions unaltered.
By cyclically iterating through N individual functions, the
function is chosen. We begin by choosing the first individual
function, f1, without losing generality. At iteration k, we
then update the data of the ik-th individual function, where
ik = (k mod N) + 1. Specifically, we have

zk+1
ik

= xk+1, zk+1
i = zki for i 6= ik. (24)

Hence, with these settings, while the information of the
selected function fik is updated, the other terms are kept the
same with their previous value. Moreover, it follows that

∇fik(z
k+1
ik

) = ∇fik(xk+1), (25)

∇fi(zk+1
i ) = ∇fi(zki ) for i 6= ik. (26)

According to (24)-(26), we can derive the following for
Hessian approximation update:

Bk+1
i = Bki +

(yki −Bki ski )(yki −Bki ski )T

(yki −Bki ski )T ski
, (27)

for i = ik and Bk+1
i = Bki for i 6= ik, where yki =

∇f(zk+1
i ) − ∇f(zki ) and ski = zk+1

i − zki . Obviously, for
i 6= ik, it indicates yki = 0 and ski = 0. This leads to our
efficient computation of {B̃k, z̃k, g̃k} in (23). To be specific,
{B̃k, z̃k, g̃k} can be updated as follows:

B̃k+1 = B̃k −Bkik +Bk+1
ik

, (28)

z̃k+1 = z̃k −Bkikz
k
ik
+Bk+1

ik
zk+1
ik

, (29)

g̃k+1 = g̃k −∇f(zkik) +∇f(z
k+1
ik

). (30)

Therefore, we avoid the computation of the large sample
summation to update {B̃k, z̃k, g̃k}. Moreover, since updating
the iterate in (23) requires matrix inverse operation, it is
desirable to update its inverse to avoid direct matrix inversion.
Substituting (27) into (28) leads to:

B̃k+1 = B̃k +
(ykik −B

k
ik
skik)(y

k
ik
−Bkiks

k
ik
)T

(ykik −B
k
ik
skik)

T skik
. (31)

By applying the Sherman-Morrison formula to (31), we obtain
the following update of the inverse of the approximated
Hessian:

H̃k+1 = H̃k −
H̃k(ykik −B

k
ik
skik)(y

k
ik
−Bkiks

k
ik
)T H̃k

(ykik −B
k
ik
skik)

T skik
(32)

where for simplicity we define H̃k := (B̃k)−1. The computa-
tional complexity of (32) is O(d2) while the cost of direct
matrix inversion is O(d3), thus substantially reducing the
computational complexity. Furthermore, to ensure that each
update of the Hessian approximation Bk+1

ik
is positive definite,

we can apply CuREG-SR1 to the resulting update. To be
specific, if (ykik − Bkiks

k
ik
)T skik < 0 and Case II happens,

we choose Mk
ik

= −b/2a where a and b are calculated
respectively. For other cases, we skip the update. In this way,
−Bkik +B

k+1
ik

is positive definite, and thus B̃k+1 � 0 in (28).
We summarize the ICuREG-SR1 algorithm in Algorithm 2.

Remark. In steps 8 and 12, it should be noted from (31)
that if the resultant Hessian approximation matrix B̃k+1 is
ill-conditioned, an effective regularization technique can be
applied. Specifically, we have

H̃k+1 ← (B̃k+1 + rI)−1, (33)

with r := ρTr(B̃k+1)
d , typical values of ρ are 10−2 and 10−3

etc.



Algorithm 1 ICuREG-SR1

Input: set z0i = x0 for randomly generated x0 from uniform
distribution [−1, 1]d, B0

i = I for i = 1, · · · , N , the
desired iteration number KN .

Output: zKNN = xKN .
1: for k = 0, 1, . . . ,KN − 1 do
2: Calculate xk+1: xk+1 = (B̃k)

−1
(z̃k − g̃k).

3: Set ik = (k mod N) + 1.
4: Compute ykik and skik according to (24)-(26).
5: Set H̃k+1 = H̃k,
6: if |(ykik −B

k
ik
skik)

T skik | > ε
∥∥ykik −Bkikskik∥∥∥∥skik∥∥ then

7: if (ykik −B
k
ik
skik)

T skik > 0 then
8: Calculate H̃k+1 via (32),
9: else

10: Compute a,b and c respectively,
11: if b2 − 4ac > 0 and b < 0 then
12: Set Mk

ik
= − b

2a and calculate H̃k+1 by substi-

tuting ỹkik := ykik +
Mk

ik

2

∥∥skik∥∥ skik into (32) in
lieu of ykik ,

13: end if
14: end if
15: end if
16: Compute z̃k+1 and g̃k+1 according to (29) and (30)

respectively.
17: end for

For N samples with feature dimension d, if each iteration
only updates one sample, there will be N Hessian approx-
imation matrices for the corresponding individual functions.
Without loss of generality, suppose that the incremental al-
gorithm starts by using the first sample (corresponding to
first individual function). The memory cost for this scenario
will be O(Nd2 + Nd). Hence, for large scale problems,
the incremental method suffers from the problem of large
memory cost. However, by grouping L individual functions
into a new individual function, the memory cost can be
substantially reduced to O(Nd

2+Nd
L ). Now we illustrate the

existing technique for further reducing the memory cost. At
the (KN + 1), the first variable denoted as zKN1 has been
updated K times. Consider limited memory SR1 (chapter 9.16
in [?]), it stores the correction pairs (sk1 , y

k
1 ) with respect to the

first variable zk1 for k = (K−m) ·N+1, . . . , (K−1) ·N+1.
Similarly, for all components zki , i = 1...N , the memory
cost will be O(2dmN). Moreover, if one groups L individual
functions as one new individual function, the memory cost will
be further reduced to O(2dmN/L). Here, our main purpose
is to propose a framework of incremental method. It can be a
future work to further refine the implementation of the above
limited memory version of our proposed ICuREG-SR1.

IV. NUMERICAL RESULTS

Here, we do numerical experiments on our suggested
ICuREG-SR1 technique. The approach will be used for logistic
regression. For the aforementioned problems, we additionally

implement the traditional SGD, SdLBFGS [15], and Sd-REG-
LBFGS [39] algorithms as a comparison. Keep in mind that
the limited memory BFGS scheme (LBFGS) is the foundation
of the subsequent two optimization strategies. The norm of the
gradient at each iteration will serve as the basis for evaluating
performance. In addition, we employ two datasets for the
tests: the scene dataset, the CIFAR-10 dataset. The parameters
have been adjusted to provide each stochastic algorithm’s best
performance in the numerical experiments to allow for fair
comparison.

A. Logistic Regression

We first consider the logistic regression for binary classifica-
tion [29]. Suppose two classes denoted as zn = 0 and zn = 1
are to be recognized respectively. Logistic regression models
the problem as p(zn|θ) = σ(θTxn)

zn · (1 − σ(θTxn))1−zn ,
where θ is the parameter to be identified, xn is the feature
vector and σ(·) is the sigmoid function given by σ(x) =
1/(1 + exp(−x)). Given the training data {zn, xn} with
xn ∈ Rd and n = 1, · · · , N , the likelihood function to be
maximized is p(z1:N |θ) =

∏N
n=1 p(zn|θ). One can maximize

the log-likelihood function or equivalently minimize the ob-
jective function: f(θ) = − 1

N

∑N
n=1 znlog σ(θTxn) + (1 −

zn)log σ(−θTxn). Moreover, we use the norm of gradient
(NOG) for performance evaluation. The NOG for logistic
regression is defined as follows:

NOGLR =

∥∥∥∥∥ 1

N

N∑
n=1

[zn − σ(θTxn)]xn

∥∥∥∥∥ . (34)

B. Numerical results with Scene Dataset

We compare Sd-REG-LBFGS with SdLBFGS and SGD in
this subsection using the scene dataset [42] as a practical
dataset. The training set has 1,211 photos, whereas the testing
set has 1,196 images. There are up to 6 scene labels (beach,
sunset, fall-foliage, field, mountain, and urban) for each image,
out of 294 features total. We merely combine beach, sunset,
and fall-foliage into a new category with label z = 1 to create
the binary classification problem. z = 0 is the label used to
group the remaining classes. The task of binary classification
involves determining if a picture in the testing set belongs to
the new category [28]. The numerical experiments conducted
on the synthetic dataset have the same parameters as the
different optimization strategies.

The performance comparison of the four methods in terms
of the NOG is displayed in Figure 1. Since our technique has
the smallest NOG value—a sign that it is the closest to the
critical point—the result demonstrates that our method per-
forms better than the other ways in most cases. Furthermore,
our suggested approach shows a propensity to keep decreasing
the gradient magnitude even after the other approaches have
converged. We may infer from the subplot that, over the
course of one run over the entire scene dataset, our suggested
technique first displays a lowered gradient magnitude and
subsequently an enhanced NOG value.
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Fig. 1: The NOG performance of different algorithms applied
in solving logistic regression using scene dataset.

C. Numerical results with CIFAR-10 Dataset

This subsection uses a sizable real-world dataset to test
the suggested approach to the Sd-SEG-LBFGS, SdLBFGS,
and SGD algorithms: The CIFAR-10 dataset is available at
[41]. From the CIFAR-10 dataset, 10,000 data points are
selected at random. Each feature vector in the dataset has a
dimension of 3072 and a label that can be between 0 and 9.
We discuss our suggested approach for binary classification
problem optimization in this work. Consequently, we split the
data points into two classes: zn = 1 for all other circumstances
and zn = 0 if the label is less than or equal to 4. Furthermore,
updating a single function on each iteration is wasteful due to
the high size of the dataset in terms of both memory cost and
arithmetic complexity. As a result, we combine 100 single
functions into a single new function. There are currently 100
distinct functions for the regrouped objective function. The
algorithm’s termination number is set to 300 times the total
number of unique functions. This has resulted in significant
memory savings and a significant decrease in the number
of iterations needed to reach the desired point, which is
close enough to the critical point. Furthermore, for numerical
stability, we have employed the effective regularization method
in (33).

Using the CIFAR-10 dataset, Figure 2 illustrates how well
different strategies work when solving the logistic regression.
Our suggested approach often exhibits a steady learning curve
with a progressive decline in the NOG. Still, it oscillates within
local iterations as well. There are 100 local iterations in a
single pass since there are 100 distinct functions. It is evident
that NOG typically drops after one run through each of the
distinct processes. Furthermore, it has demonstrated that, in
contrast to other methods that have reached convergence, our
suggested method has the lowest gradient magnitude and keeps
falling.
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Fig. 2: The NOG performance of different algorithms applied
in solving logistic regression using CIFAR-10 dataset.

V. CONCLUSION

We have thoroughly examined CuREG-SR1’s convergence
characteristics and have produced some interesting findings.
It should be mentioned that there may be issues when di-
rectly employing classical methods to assess the convergence
qualities of SR1. For instance, the difference between the
true and approximated Hessian is bounded in Theorem 2.
The approximated Hessian converges to the genuine Hessian
for SR1, though. This is because the shift is introduced by
using the cubic regularized approach. We therefore restrict
the regularized parameter, under which we have proven that
there are q − d superlinear steps in every q ≥ d + 1 step for
sufficiently large iteration numbers. In addition, we presented
a brand-new incremental optimization technique based on SR1
and CuREG-SR1 and demonstrated how to effectively apply
it to the resolution of complex issues.
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