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ABSTRACT Stochastic alternating direction method of multiplier (ADMM) has shown great promise in
distributed environments, and improvements in algorithmic flexibility are expected to result in significant
advantages. In this paper, we provide Flex-SADMM, a novel stochastic optimization method based on
distributed ADMM. To address the subproblems of ADMM, we specifically integrate variance-reduced first-
order information and approximate second-order information in order to achieve steady convergence and
improve the search direction's precision. Moreover, in contrast to other ADMM-based approaches that
require updates from every computational node in each iteration, our framework only requires nodes to
update once, at a predetermined iteration interval, greatly increasing flexibility. Experiments validate the
effectiveness and improved flexibility of our suggested approach.
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. INTRODUCTION

Numerous fields, including wireless communication
[1]12][3][4][5], and machine leaming [6][7][8][49][50][51],
have made extensive use of mathematical optimization. The
theories of determinmistic optimization serve as the
foundation for stochastic optimization. Its primary
component, known as the stochastic gradient descent
(SGD), can be traced back to the seminal work [9]. It
approximates the exact gradient for the search direction by
using a mini-batch of randomly picked data pomts from the
entire dataset.

Its Iigh sluggish
convergence [10]. As a result, there are numerous
techniques aimed at managing and dimimshing vanance
throughout mini-batch optimization. In particular, the
variance reduction approaches [11] have been developed to
address the aforementioned problem and significantly speed
up SGD's convergence [12]. Stochastic average gradient
technique (SAG) [13], its extension, the stochastic vanance
reduction gradient method (SVRG), are exemplar
algorithms. Specifically, SAG and SAGA [14] make use of
full gradient, updating with the most recent data at each
iteration rather than performing a direct calculation. They
share SGD's quick convergence tume and little processing
overhead. Moreover, second-order information—such as
the Hessian matrix—is more precise and can result in a
higher rate of convergence. To be exact, numerous
recursive update strategies for the estimated Hessian matrix
have been presented including symmetric rank-one (SR1)

variance, however, causes a
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update [15][16][17] and rank-two variations such as the
Davidon-Fletcher-Powell (DFP) scheme [18][19] and the
BFGS update scheme [20][21].

Specifically, under the stochastic regime, [22] has
investigated the online BFGS and online limited memory
BFGS (oLLBFGS). The primary component involves
utilising the stochastic gradient to convert the deterministic
BFGS and limited memory BFGS (LBFGS) into a
stochastic version. The convergence qualities of oLBFGS
have been further explored under the strong convexity
assumption in [24]. A new stochastic quasi-Newton
technique for support vector machine (SVM) issues has
been proposed by [25]. Tt uses term-by-term equalities to
approximate the diagonal elements. Since it only involves
scalar multiplications - the approximated diagonal elements
of the rescaling matrix, this method is highly
computationally efficient. Nevertheless, noise may be
introduced by directly using the stochastic gradient for the
Hessian approximations, which could compromise the
convergence's resilience. Hence, it is a challenge for
controlling the quality of the curvature approximations in
stochastic optimization.

One computational node is used to implement the
aforementioned optimization techniques. However, in the
big data era, solving a large-scale optimization problem in
machine leamning with a single computing node is often
prohibitive. This is owing to the reason that the quantities
of realistic data for training a machine leaming model can
be very enormous and often vary from 1TB to 1PB.
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Because of this, distributed optimisation has emerged as a
key technique, and it is now critical to create algorithms
that are scalable and efficient enough to handle large
datasets in a parallelized or totally decentralised manner.
The alternating direction method of multipliers, or ADMM,
1s ideally suited to solve large-scale machine leaming 1ssues
and distributed convex optimisation in general. The
ADMM method is easy to use and works by breaking down
problems into smaller, more manageable tasks that can be
completed in parallel. As a result, it is well-suited for a
variety of large-scale applications, such as distributed
compressive  sensing, massive  MIMO  wireless
communication systems [29][30], and machine leaming
with large-scale data distributed systems [26][27][28]. It has
garmered a great deal of attention in both theoretical and
practical domains over decades because it penalizes the
constraint equality with a quadratic term in order to solve
optimisation problems using the augmented Lagrangian
function, which i1s advantageous in numerical stabability
[31][32][33][34][35].

ADMM method is simple and its main ingredient is to
decompose the problems into subproblems, which can be
individually solved in parallel, thus it turns out to be a
natural fit in a wide class of large-scale applications, e.g.,
machine leaming with large-scale data-distributed systems
[26], distributed compresive sensing [27][28], and massive
MIMO wireless communication systems [29][30]. Moreover,
since it solves optimization problems via augmented
Lagragian function, which penalizes the contramt equality
with a quadratic term, it is advantageous in numerical
stabability, and hence it has attracted a considerable amount
of attention in both practical and theoretical aspects over
decades [31][32][33][34][35].

In particular, [31] has offered a thorough analysis of the
ADMM framework. A class of strongly convex problems
with a linear equality constraint have had their convergence
analysis examined. The convergence rate of the ADMM
approach with multiple separable blocks of variables in
strongly convex optimisation problems has been further
explored in the extensive work [38]. The global R-linear
convergence rate has been determined under the
assumptions of a given error bound condition and a
sufficiently small dual stepsize. A decentralised ADMM
(DADMM) technique is put out in [39] in an effort to
increase computing efficiency. The key component is to
fully account for each agent's network architecture, after
which each agent can modify its variable to limit its
communication to its neighbors. An further linearized
version of DADMM (DLM) has been proposed by [40]. It
combines the quick convergence rate of ADMM with the
computational economy of the distributed gradient method.
Both DADMM and DLM's linear convergence rates are
further shown under the same strong convexity assumption
in the objective function. A class of nonconvex problems
with numerous separable blocks of variables has been

studied in [41], where the ADMM approach 1s applied. It is
assumed that the penalty value 1s large enough to make the
subproblem strongly convex and easily solved.

The determmistic regime was used to study the
aforementioned ADMM approaches, which were predicated
on complete accessibility to the entire distributed dataset.
However, mn practical applications, a big dispersed dataset
may still result in a high processing burden. Stochastic
settings are added to ADMM as a more natural approach to
solving such a problem, which mvolves using the sampled
mini-batch of the dataset for unbiased gradient estimates
rather than the entire distributed dataset. A stochastic
ADMM approach has been put forth in [42] to address a
category of nonsmooth convex problems. Furthermore, given
particular assumptions, the convergence rates for convex and
strongly convex functions have been studied. [43] have
looked into the popular SVRG technique used in stochastic
ADMM. For nonconvex situations, [44] has mvestigated
stochastic ADMM in conjunction with a number of variance
reduction techniques in great detail. To be more precise, the
ADMM approach has been extended to include SVRG,
stochastic average gradient (SAG), and the extension of SAG
(SAGA). This has led to the creation of SVRG-ADMM,
SAG-ADMM, and SAGA-ADMM, respectively. It has been
shown that every resulting ADMM approach converges to an
expected e-stationary pomt. In [43], SVRG-ADMM has been
further investigated for solving convex optimization
problems with composite objective functions, which has
achieved the convergence rates of 0(logS/S) for strongly
convex and Lipschitz smooth objective functions, and 0(1/
VS) for convex objective functions without Lipschitz
smoothness. In [45], a novel stochastic ADMM has been
proposed, its main mgredient is to combine classical
stochastic ADMM with gradient free and variance reduction
strategy.

All of the aforementioned techniques, however, cannot
be used durectly in a system with several agents, where
some agents are only accessible to update variables during
each iteration while the other agents remain mute. Even
though [38] has increased the adaptability of ADMM, using
the stochastic gradient may cause a huge variance in the
subproblem. Consequently, to increase the adaptability of
the traditional stochastic ADMM approach, we suggest a
novel approach. Specifically, the unique approach just calls
for each agent to update its variables on a regular basis—at
least once. We apply the variance reduction strategy while
maintaining the increased flexibility. The variance reduced
stochastic gradient is therefore computed at the first stage
and employed in the second stage iterations of our proposed
technique, which splits the standard stochastic ADMM
method procedure into two phases. Note that our proposed
technique becomes SVRG-ADMM when the periodicity is
set to one, meaning that every agent updates its
corresponding variable at every iteration. As a result, our
suggested approach generalises the SVRG-ADMM in use
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today. In brief the contributions we have made are as

follows:

® A new approach to stochastic ADMM is put forth.
Since the convexity of the objective function f has not
been assumed, our suggested approach may be used to
resolve a particular class of nonconvex problems.
Furthermore, we include Sd-REG-LBFGS to
guarantee the positive definiteness of the Hessian
approximation because the subproblem might not be
convex. Moreover, it is not necessary for every agent
to update its variable throughout every iteration.
Rather, we mandate that every agent modifies its
variable at least once on a regular basis.

o We use the SVRG approach in our suggested
stochastic ADMM technique. As a result, the SVRG
approach is likewise divided into two steps in our
suggested ADMM method. Although SVRG has been
frequently utilised, its application to the stochastic
ADMM framework above is not straightforward since
the direct combination may not ensure convergence.
We suggest that the periodicity be the number of
iterations in the second stage of the SVRG technique,
given that every agent modifies its variable at least
once every period.

Il. THE PROPOSED ALGORITHM

In this section, we start with the review of basic theory in
ADMM. This part 1s based on [31]. Then, we will introduce
the application of SRL in the subproblem of stochastic
ADMM, which is qute straightforward. Specifically,
suppose that there are K agents working in parallel (Here,
each agent corresponds to a computation node [47]), and
the large dataset D is divided into K subsets D;,. Moreover,
D, 1s allocated to the kth agent. Consider the following
consensus optimization problem with equality constraint:

. K )
xb]{E}ﬂqK; Yoo [l D) + g(xo),

s.t. Xy, —x=0,k=1,..,K

(V#

where x;, ER? | fi:RY >R is possibly a nonconvex
function with respect to the kth agent, and g: RY > R is
assumed to be a convex function with respect to xp .
Moreover, the single function with respect to the data point
d; € Dy, 1s assumed to be f;(xy; d;). With these settings,
we have fr(x;) = EdiEDk fri(xp; d;) . Here. we use the
notation f(x;) for fr(x; D) for simplicity, 1.e,
fr(xp): = fr(x; D) . The problem (1) can be solved
through augmented Larangian function as follows:

L({ox b i x0) = 2521 fre( Dy) + g(xp) +
Zf=1 (Ak! X — xO) + Zf:l %”xk - xOHZ-

(2)
In this section, we consider the large dataset cases and the
subset D 1s also large. Hence, the traditional stochastic
ADMM method exists the following three problems:

t+1 -

(1). In linearized ADMM, the subproblem xj
argmin,, £ () + (VF e (rh), 2 = xiy + 2l -
X% + (A xp — x0) + %" |l — xol|*> may be solved
more accurately by  incorporating  Hessian
approximation By . However, if f;(-) 1s nonconvex,
the subproblem can be difficult to solve since the
reduction in the objective function of the subproblem
may not be ensured at each iteration.

(2). Moreover, directly sampling a small subset of D, to
form the stochastic gradient for optimization may lead
to large variance, this may further slow down the
convergence speed.

(3). Allthe K agents are available to implement the update
of each xi,k=1,.,K in parallel, traditional
stochastic ADMM method can be employed. However,
a more general case 1s when there are less than K
agents available for the implementation of the update

at each 1teration and thus traditional stochastic
ADMM cannot be directly applied.

A. SVRG STRATEGY

The reduction of the variance of stochastic gradient can be
realized by two stage optimization. In the first stage, the
full gradient is evaluated at the newly updated vanable.
Then it is stored and used for the calculation of stochastic
gradient in next stage. Specifically, denote the iteration
number as (s +1,t + 1), where s + 1 is iteration number
of the first stage, and ¢ +1 1s the second stage iferation
number, then the stochastic gradient proposed with respect
to the kth variable x; in [12] 1s given as follows:

11 .
Vi = ot Zageny, [VkiCxie di) —

Vi (X di)] + V(%) (3)
where a subset of data points D}, are randomly sampled
with the batch size b} << Ny.. It can be easily verified that
the stochastic gradient is unbiased, i.e., E[viﬁllxit] =
Vi(xith). As the full gradient Vf.(¥;) is only calculated
at the first stage and maimntained for the second stage,
SVRG strategy is computationally efficient. Moreover, it is
verified in Lemma 1 that as the algorithm converges, the
variance of 17?;1 will be progressively reduced to null.
SVRG is first proposed in [12], and soon it has been widely
applied [44][43][45] and shown effectiveness and fast
convergence. Considering the above benefits, we
incorporate SVRG method in developing our proposed
stochastic ADMM method.

As not all agents update their comresponding variables at
each iteration, developing an ADMM based algorithm that
guarantees convergence can be difficult. However, in the
convergence analysis, by requiring that each agent updates
its variable at least once every specific period T , the
stochastic algorithm 1s expected to convergence.
Specifically, at each iteration ¢ +1 ., define an index set
751 c{0,1,..,K}, if an agent index k € 771 | then the
agent 1s required to update the variable x , otherwise, the
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agent keeps the variable x;, using the previous iterate. For
the requirement of convergence that each variable must be

updated at least once for every T iterations, we have,
UL, # ={01,...K} ).

B. Hessian Approximation Scheme

For dealing the problem 1, let us consider the quadratic
approximation of the objective function in ADMM
subproblem, specifically, we have:

Xt = argming, fi () + (Vf(xh), X — 1)
1
+ E{Bi(xk —xb),x, — k) ®)

+ (Ag, X — Xp) +%k||xk — xoll%.

Popular recursive update schemes for the approximated
Hessian matrix may be used, and these include symmetric
rank-one (SR1) update [15][16][17] and rank-two variants
such as the Davidon-Fletcher-Powell (DFP) scheme [18][19]
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
scheme [20][21]. In this subsection, we maimly consider
BFGS method as it 1s one of the most popular quasi-Newton
algorithms:

'y T
Biwt = By + 3t = S, (6)
where the correction pairs are S, = Xp.1 —X; and Yy, =
Vf(rpe1) — Vf(x,) respectively. However, there exists
another problem of numerical stability. Especially for
nonconvex objective functions, the positive definiteness of
the Hessian update is difficult to maintain. Moreover, for
small dataset, it may result in the ill-conditioning problem,
which harms the convergence. To address these concerns, we
adopt Sd-REG-LBFGS update scheme. The main ingredient
is to incorporate both regularization scheme and damped
parameter, where the former can ensure numerical stability
and the latter can keep the positive definiteness of the
Hessian approximation matriix. Specifically, Sd-REG-

LBFGS updates the Hessian approximation matrix via:
_ 3id% _ BrsispBu
Byy1 =By + 7" —

= T
EA spBrsy

(7)

with the modified gradient difference:

e =0y + (1= 0)(Br + 8Dsy,  (8)
where & is a given positive constant that satisfies specific
condition (See Lemma 1), and the damped parameter 1s given
as:
kY < 0.255(By
+68D)s, + ystsy,
1, otherwise.

0857 (By+6Nsy—ysksy  if
T T
Sk (Bp+ol)sg—s) Vi

ékz

€)

Moreover, the extensions to stochastic regime and hmited
memory version are straightforward.

Input: initialize x; for k = 0, ..., K and memory size M. Choose
the constant & and y satisfying 0.86 > y.

l:fors — 0,1,...do

2 Set X, « x, and calculate Vf,(x;). fork =1, .., K.

3: fort = 0,1,...,T—1do

4 if 0 € J then

5 Xg argminxUL({xk},{lk},xO)

6: else xp < x¢

8: end if

9: if k €7 then

10: Update x;, via (5) and update A, via
A < A+ pi(x — x0)

11: else

12: Xy Xp. Ay — Ay

13: end if

14:  end for

15: end for

Algorithm 1 Flex-SADMM

C. FLEX-SADMM

In light of the aforementioned considerations, we put forth
a brand-new stochastic ADMM technique that only
necessitates that each agent update its matching variable
once every T iterations. In order to incorporate SVRG, we
split the ADMM technique into two parts. In the first stage,
the whole gradient 1s calculated, and in the second stage,
the number of iterations needed is precisely set to T. Each
agent can change its variable in this manner at least once m
the second stage. We summarise our suggested stochastic
ADMM as in Algorithm 1 based on the considerations
above.

In Algorithm 1, since all agents shall update theiwr
corresponding variables at least once within the T iterations
at the second stage, the full gradient Vf(X}) is calculated in
step 2 for all agents k=1, .., K . Then vfj;l 1s further
computed for k€7 , which 1s used for updating the
corresponding variable i step 10. It should be noted that the
steps 2-14 can be camried out in parallel. Specifically, the
chosen agents in the index set 7 can update the variables x;,
and 4; 1n a distibbuted manner. In step 10, the Hessian
approximation by Sd-REG-LBFGS is maintained positive
definite. As mentioned above, the strategy can avoid the 1ll-
conditioning problem and thus our proposed algorithm can
perform robustly under small samples. Moreover, the
subproblem in step 10 1s a quadratic convex problem and can
be solved by directly nulling the first-order derivative

Remark: We suggest using our proposed stochastic
ADMM approach 1n a parameter server. Moreover,
asychronous and synchronous algorithms have been
thoroughly studied for a popular distributed gradient descent
technique. Asynchronous techniques gather worker data
partially, whereas synchronous algorithms need the server to
wait for updates from every worker. While the ADMM
approach can boost fault tolerance, distributed gradient
descent (DGD) has a comparatively lower fault tolerance. As



Digital science

Paper number: 3006-0753 Online number: 3006-2942

a result, the ADMM approach can be modified for an
asynchronous algorithm. Our suggested approach provides a
framework of adaptation to asynchronous algorithms, since
each worker only needs to update its variables once every T’
iterations.

Convergence Anmalysis: For notational simplicity, let us
denote x?;l as xi, , the same strategy is used for other
variables. Subsequently, the following lemma shows the
variance of the stochastic gradient 1s progressively reduced
to zero when the algorithm converges.

Theorem [. For each k€{l,.,K} the sequence
{0 AL X0} generated by the proposed Algorithm 1 1s
expected to converge to a limit point {x}, A, x5} which
satisfies:

E||Vf () + A
Ellx; — xoll = 0;
E[d(E)y A 09(x))] = O,
where the metric d(x,Y) is the mimmal distance between
the vector x and the set Y, 1.e.,
d(x,Y) = minllx =yl (41)

Moreover, given any sufficiently small positive value £ > 0,

the iteration number S needed to achieve the following e-
stationary point
E”ka(xfm) + /li.t” <s
[E:”xfm - XE,tH =g

B[d(2, 42 00(5.)] <

2_¢* ..
satisfies S = @ for some positive constant n >0 and
T>0.

IV. NUMERICAL EXPERIMENTS

We have studied the theoretical convergence properties of
our proposed Flex-SADMM. For the convergence speed in
the Theorem 1, we have shown that it 1s closely related to
the first stage iteration number S. However, it is also related
to the second stage iteration number T. Let us illustrate this
briefly. For the convergence speed 0(1/5) in Theorem 1, it
has been derived under the assumption that each agent k
has updated its variables at least one time within the second
stage. In fact, if we assume that each agent k is required to
update its variables r times within the second stage, it can
be straightforwardly derived that the convergence speed

will be O(%) Hence, in this section, we will study the

effect of the update times r for each agent at the second
stage. Here, five scenarios based on ADMM are applied for
studying the effectiveness of using our proposed Hessian
approximation scheme:

1). Flex-SADMM: 1t will be implemented according to
Algorithm 1;

2). Flex-SADMM without BFGS: the only difference to
scenario 1) 1s that identity matrix will be utilized instead of
updating the Hessian approximation matrix;

3). Flex-SADMM without SVRG: to reflect the
tremendous performance improvement brought by SVRG,
we also mmplemented Flex-SADMM with no SVRG to
show its importance and efficiency:;

4). Flex-SADMM without SVRG or BFGS: it will be
seen that SVRG has brought large performance
improvement, which even overwhelms the BFGS. Hence,
Flex-SADMM with no SVRG or BFGS 1is implemented.

5). Fast ADMM: the momentum based algorithm [48];

For the dataset, we choose scene dataset [46] (available
at http://mulan.sourceforge net /datasets-mlc html), since it
1s simple to study the effect of the parameters. Furthermore,
we consider the above 5 scenarios applying to solve logistic
regression for binary classification problem due to the
simplicity of logistic regression. For the performance
evaluation, we choose the norm of gradient (NOG) such
that 1t can reflect how close the iteration poimnt is to the
optimal pont, 1.e.,

1
NOG= [| 320, [20 = 0(07 %)%,

(57)

where 8 i1s the optimization variable, z,, is the class label
and x,, 1s the feature vector.

Figure 1 The arrangement of the available agents at each iteration in
the second stage.

B. THE IMPACT OF FIRST STAGE

Recall that with the assumption that each agent should
update 1ts variables at least one time with the second stage,
the convergence speed will become O(1/S5). Moreover, the
number of the iteration in the first stage determines the
times of calculating the full gradient. Therefore, with the
above discussions, we continue to study the effect of the
iteration number in first stage, namely, §. Here, the total
iteration number is set to 1, 000 to ensure fair comparison.
Hence, the iteration number in second stage 1s 1000/S5. We
choose § =[10, 20, 50, 100]. Moreover, for simplicity, we
arrange the available agents as one block, and each block
has no common agent. According to this, we set the
available agent number to be AG =5 . Moreover, the
dataset 1s divided into K = 10. Subsequently, we have each
agent will update its variables r =[50, 25, 10, 5] times
respectively.

Figure 3 shows the results of different iteration
number settings in the first stage. It can be seen that
convergence speed is nearly the same. This 1s because for
the four scenarios of r =[50,25,610,5] , since the

. 1 . . .
convergence speed is 0(—) as aforementioned discussions,

the four scenarios share nearly the same convergence speed.
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This matches theory well. In particular, the zigzags along
the line shows the regularity, which is an interesting
phenomenon. To be specific, taking Figure 3 (a) as the
example, there are in general 10 zigzags and each is with
smaller zigzags oscillating, we call the larger zigzag as
global z1gzag and the smaller as local zigzag. For the Figure
3 (a), the number of global zigzags equals to the first stage
iteration number S = 10. This is due to the reason that the
full gradient is calculated at each start of the first stage, and
then it has been passed to the second stage. Hence, with the
newly calculated full gradient, it will drop more obviously
at the start of the second stage. For the local zigzags, it is
obvious that it lies within second stage. It oscillates because
only one block of agents updates its variables at each
iteration while the others remain silent, and then next block
is chosen for the updating. Hence, larger § will lead to
dense zigzags and this matches well as the Figure 3 shows.

C. THE IMPACT OF AVAILABLE AGENTS
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the update times of each agent can be varied more flexibly.
For the data division, it will be set to K = 20. Furthermore,
we set AG=]1,3,5 7, 9, 20] Subsequently, the
corresponding update times for each agent are
[1, 3, 5, 7,9, 20] respectively. It should be noted that
when AG = 20, it means all agents update their variables at
each iteration.

As Figure 4 illustrates, it can be seen that in general
larger update times for each agent lead to a better
performance of NOG and faster convergent speed. This

matches well with the convergent theory 0(%) Note that

the curves in Figure 4 (a) and (f) are much smoother. For
Figure 4 (f), the reason is that all the agents update their
variables and thus there will be no zigzags. In Figure 4 (a),
it can be seen that at each start of the second stage, the
curve drops more sharply than the cases in the iterations of
the second stage. However, compare to other cases that
multiple agents update their variables at each iteration, this
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Figure 3 The effect of the iterations number in the first stage, to be specific, (a). § = 10; (b). § = 20; (¢). § = 50; (d). § = 100.

According to the above experimental results, we notice
that the updating times of each agent within the second
stage have a significant impact on the performance of our
proposed method. Hence, we continue to study the impact
of different number of the available agents at each iteration,
which can determine the update times of each agent.
Specifically, the total iteration number is set to 1, 000, and
the first stage iteration number is set to S = 50, such that

decreasing

1s much slight. This is because only one agent
performs to decrease NOG. For other cases that have
multiple agents available at each iteration, it can be seen
that the performance improvement becomes smaller as the
number of available agents increases. Hence, our proposed
method has strong ability in fault tolerance, which also
means that one can choose fewer available agents at each
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iteration for the update, because the very slight performance
sacrificing 1s worth trading for saving hardware resources.

D. THE STUDY OF THE CONVERGENCE

Next, we continue to study when the condition that each
agent updates 1its variables at least once 1s not satisfied. To
achieve this scenario, the dataset is divided mto K = 60
parts. The total iteration number is set to 1, 000 with S =
50 . Hence, under the condition that adopts the available
agent scenario according to Figure 1, there should be at
least a block of 3 agents updating the variables at each
iteration. To see if it 1s not satisfied, we choose to set to be
AG =11, 2,3, 4]. Obviously, we have set three groups for
studying, where the first group does not satisfy the
condition, the second group just meets the condition and the
third group just surpasses the condition. Specifically, AG =
[1, 2] does not satisfy the convergence condition. AG = 3
just meets the condition while AG =4 just exceeds the
condition.
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It can be seen from Figure 5 that when the condition
that each agent should update its variables at least one tiume
(here, AG = 3 ) 1s not satisfied, all algorithms perform
poorly. AG =3 seems to be a water-shed, which means
beyond AG =3 it can reach a better and satisfactory
performance, while below AG = 3, the performance is poor.
Note that when AG = 4, the performances of all algorithuns
are substantially improved compared to AG < 3. Therefore,
it matches Theorem 1 well.

V. CONCLUSION

As there exists different issues for classical stochastic
ADMM methods, we have proposed a novel stochastic
ADMM method to address these concerns. Specifically, we
first incorporate SVRG strategy and divide the ADMM
procedure into two stages. At the second stage, the agents
work for updating their corresponding variables in parallel.
However, we only require each of them updates its variable
at least once at the second stage. In the comparisons with
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Figure 4 The effect of the number of available agents at each iteration, to be specific, (a). AG = 1: (b). AG = 3; (c).
AG=5;(d). AG=7;(e). AG=9; (f). AG = 20.
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